Renata Perotto de Souza, Mariana Vieira Dalla Valentina, Bruna Ferreira Leal, Sílvia Dias Oliveira, Carlos Alexandre Sanchez Ferreira
{"title":"蜱虫富含甘氨酸的蛋白质:不仅仅是一种水泥成分。","authors":"Renata Perotto de Souza, Mariana Vieira Dalla Valentina, Bruna Ferreira Leal, Sílvia Dias Oliveira, Carlos Alexandre Sanchez Ferreira","doi":"10.1017/S0031182024001410","DOIUrl":null,"url":null,"abstract":"<p><p>Glycine-rich proteins (GRPs) are arbitrarily defined as those containing 20% or more glycine residues and constitute a superfamily divided into subfamilies based on their structure and/or function. GRPs have been identified in a diverse array of organisms and have been shown to possess a number of distinctive biological characteristics, including nucleic acid binding, adhesive glue-like properties, antimicrobial activity, involvement in the stress response and in the formation of cuticle components. In ticks, their expression has been described and studied mainly in the salivary glands, and their primary function is usually associated with cement formation and/or structure. Conversely, several GRPs are present in all tick developmental stages, and the expression of many GRP genes is modulated by physiological processes and immune challenges, such as feeding and pathogen infection. Considering that some tick GRPs appear to play essential roles in the tick life cycle, they have been evaluated as immune targets, with a focus on their potential application in vaccine development. This review highlights the roles that tick GRPs may perform beyond the formation and maintenance of the cement scaffold, including structural characterization, locations and functional relevance, hypothetical functions, and their potential use in anti-tick vaccine development.</p>","PeriodicalId":19967,"journal":{"name":"Parasitology","volume":" ","pages":"1063-1073"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772090/pdf/","citationCount":"0","resultStr":"{\"title\":\"Glycine rich proteins of ticks: more than a cement component.\",\"authors\":\"Renata Perotto de Souza, Mariana Vieira Dalla Valentina, Bruna Ferreira Leal, Sílvia Dias Oliveira, Carlos Alexandre Sanchez Ferreira\",\"doi\":\"10.1017/S0031182024001410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glycine-rich proteins (GRPs) are arbitrarily defined as those containing 20% or more glycine residues and constitute a superfamily divided into subfamilies based on their structure and/or function. GRPs have been identified in a diverse array of organisms and have been shown to possess a number of distinctive biological characteristics, including nucleic acid binding, adhesive glue-like properties, antimicrobial activity, involvement in the stress response and in the formation of cuticle components. In ticks, their expression has been described and studied mainly in the salivary glands, and their primary function is usually associated with cement formation and/or structure. Conversely, several GRPs are present in all tick developmental stages, and the expression of many GRP genes is modulated by physiological processes and immune challenges, such as feeding and pathogen infection. Considering that some tick GRPs appear to play essential roles in the tick life cycle, they have been evaluated as immune targets, with a focus on their potential application in vaccine development. This review highlights the roles that tick GRPs may perform beyond the formation and maintenance of the cement scaffold, including structural characterization, locations and functional relevance, hypothetical functions, and their potential use in anti-tick vaccine development.</p>\",\"PeriodicalId\":19967,\"journal\":{\"name\":\"Parasitology\",\"volume\":\" \",\"pages\":\"1063-1073\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772090/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parasitology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S0031182024001410\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasitology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0031182024001410","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Glycine rich proteins of ticks: more than a cement component.
Glycine-rich proteins (GRPs) are arbitrarily defined as those containing 20% or more glycine residues and constitute a superfamily divided into subfamilies based on their structure and/or function. GRPs have been identified in a diverse array of organisms and have been shown to possess a number of distinctive biological characteristics, including nucleic acid binding, adhesive glue-like properties, antimicrobial activity, involvement in the stress response and in the formation of cuticle components. In ticks, their expression has been described and studied mainly in the salivary glands, and their primary function is usually associated with cement formation and/or structure. Conversely, several GRPs are present in all tick developmental stages, and the expression of many GRP genes is modulated by physiological processes and immune challenges, such as feeding and pathogen infection. Considering that some tick GRPs appear to play essential roles in the tick life cycle, they have been evaluated as immune targets, with a focus on their potential application in vaccine development. This review highlights the roles that tick GRPs may perform beyond the formation and maintenance of the cement scaffold, including structural characterization, locations and functional relevance, hypothetical functions, and their potential use in anti-tick vaccine development.
期刊介绍:
Parasitology is an important specialist journal covering the latest advances in the subject. It publishes original research and review papers on all aspects of parasitology and host-parasite relationships, including the latest discoveries in parasite biochemistry, molecular biology and genetics, ecology and epidemiology in the context of the biological, medical and veterinary sciences. Included in the subscription price are two special issues which contain reviews of current hot topics, one of which is the proceedings of the annual Symposia of the British Society for Parasitology, while the second, covering areas of significant topical interest, is commissioned by the editors and the editorial board.