Lynn C. Lunsonga , Mohammad Fatehi , Wentong Long , Amy J. Barr , Brittany Gruber , Arkapravo Chattopadhyay , Khaled Barakat , Andrew G. Edwards , Peter E. Light
{"title":"钠/葡萄糖共转运蛋白2抑制剂恩格列净以突变特异性的方式抑制长QT 3晚期钠电流。","authors":"Lynn C. Lunsonga , Mohammad Fatehi , Wentong Long , Amy J. Barr , Brittany Gruber , Arkapravo Chattopadhyay , Khaled Barakat , Andrew G. Edwards , Peter E. Light","doi":"10.1016/j.yjmcc.2024.11.014","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Sodium/glucose cotransporter 2 inhibitors (SGLT2is) like empagliflozin have demonstrated cardioprotective effects in patients with or without diabetes. SGLT2is have been shown to selectively inhibit the late component of cardiac sodium current (late I<sub>Na</sub>). Induction of late I<sub>Na</sub> is the primary mechanism in the pathophysiology of congenital long QT syndrome type 3 (LQT3) gain-of-function mutations in the SCN5A gene encoding Nav1.5. We investigated empagliflozin's effect on late I<sub>Na</sub> in thirteen known LQT3 mutations located in distinct regions of the channel.</div></div><div><h3>Methods</h3><div>The whole-cell patch-clamp technique was used to investigate the effect of empagliflozin on late I<sub>Na</sub> in recombinantly expressed Nav1.5 channels containing different LQT3 mutations. Molecular modeling of human Nav1.5 and simulations in a mathematical model of human ventricular myocytes were used to extrapolate our experimental results to excitation-contraction coupling.</div></div><div><h3>Results</h3><div>Empagliflozin selectively inhibited late I<sub>Na</sub> in LQT3 mutations in the inactivation gate region of Nav1.5, without affecting peak current or channel kinetics. In contrast, empagliflozin inhibited both peak and late I<sub>Na</sub> in mutations in the S4 voltage-sensing regions, altered channel gating, and slowed recovery from inactivation. Empagliflozin had no effect on late/peak I<sub>Na</sub> or channel kinetics in channels with mutations in the putative empagliflozin binding region. Simulation results predict that empagliflozin may have a desirable therapeutic effect in LQT3 mutations in the inactivation gate region.</div></div><div><h3>Conclusions</h3><div>Empagliflozin selectively inhibits late I<sub>Na</sub>, without affecting channel kinetics, in LQT3 mutations in the inactivation gate region. Empagliflozin may thus be a promising precision medicine approach for patients with specific LQT3 mutations.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"198 ","pages":"Pages 99-111"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The sodium/glucose cotransporter 2 inhibitor Empagliflozin inhibits long QT 3 late sodium currents in a mutation specific manner\",\"authors\":\"Lynn C. Lunsonga , Mohammad Fatehi , Wentong Long , Amy J. Barr , Brittany Gruber , Arkapravo Chattopadhyay , Khaled Barakat , Andrew G. Edwards , Peter E. Light\",\"doi\":\"10.1016/j.yjmcc.2024.11.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Sodium/glucose cotransporter 2 inhibitors (SGLT2is) like empagliflozin have demonstrated cardioprotective effects in patients with or without diabetes. SGLT2is have been shown to selectively inhibit the late component of cardiac sodium current (late I<sub>Na</sub>). Induction of late I<sub>Na</sub> is the primary mechanism in the pathophysiology of congenital long QT syndrome type 3 (LQT3) gain-of-function mutations in the SCN5A gene encoding Nav1.5. We investigated empagliflozin's effect on late I<sub>Na</sub> in thirteen known LQT3 mutations located in distinct regions of the channel.</div></div><div><h3>Methods</h3><div>The whole-cell patch-clamp technique was used to investigate the effect of empagliflozin on late I<sub>Na</sub> in recombinantly expressed Nav1.5 channels containing different LQT3 mutations. Molecular modeling of human Nav1.5 and simulations in a mathematical model of human ventricular myocytes were used to extrapolate our experimental results to excitation-contraction coupling.</div></div><div><h3>Results</h3><div>Empagliflozin selectively inhibited late I<sub>Na</sub> in LQT3 mutations in the inactivation gate region of Nav1.5, without affecting peak current or channel kinetics. In contrast, empagliflozin inhibited both peak and late I<sub>Na</sub> in mutations in the S4 voltage-sensing regions, altered channel gating, and slowed recovery from inactivation. Empagliflozin had no effect on late/peak I<sub>Na</sub> or channel kinetics in channels with mutations in the putative empagliflozin binding region. Simulation results predict that empagliflozin may have a desirable therapeutic effect in LQT3 mutations in the inactivation gate region.</div></div><div><h3>Conclusions</h3><div>Empagliflozin selectively inhibits late I<sub>Na</sub>, without affecting channel kinetics, in LQT3 mutations in the inactivation gate region. Empagliflozin may thus be a promising precision medicine approach for patients with specific LQT3 mutations.</div></div>\",\"PeriodicalId\":16402,\"journal\":{\"name\":\"Journal of molecular and cellular cardiology\",\"volume\":\"198 \",\"pages\":\"Pages 99-111\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular and cellular cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022282824002049\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022282824002049","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
The sodium/glucose cotransporter 2 inhibitor Empagliflozin inhibits long QT 3 late sodium currents in a mutation specific manner
Background
Sodium/glucose cotransporter 2 inhibitors (SGLT2is) like empagliflozin have demonstrated cardioprotective effects in patients with or without diabetes. SGLT2is have been shown to selectively inhibit the late component of cardiac sodium current (late INa). Induction of late INa is the primary mechanism in the pathophysiology of congenital long QT syndrome type 3 (LQT3) gain-of-function mutations in the SCN5A gene encoding Nav1.5. We investigated empagliflozin's effect on late INa in thirteen known LQT3 mutations located in distinct regions of the channel.
Methods
The whole-cell patch-clamp technique was used to investigate the effect of empagliflozin on late INa in recombinantly expressed Nav1.5 channels containing different LQT3 mutations. Molecular modeling of human Nav1.5 and simulations in a mathematical model of human ventricular myocytes were used to extrapolate our experimental results to excitation-contraction coupling.
Results
Empagliflozin selectively inhibited late INa in LQT3 mutations in the inactivation gate region of Nav1.5, without affecting peak current or channel kinetics. In contrast, empagliflozin inhibited both peak and late INa in mutations in the S4 voltage-sensing regions, altered channel gating, and slowed recovery from inactivation. Empagliflozin had no effect on late/peak INa or channel kinetics in channels with mutations in the putative empagliflozin binding region. Simulation results predict that empagliflozin may have a desirable therapeutic effect in LQT3 mutations in the inactivation gate region.
Conclusions
Empagliflozin selectively inhibits late INa, without affecting channel kinetics, in LQT3 mutations in the inactivation gate region. Empagliflozin may thus be a promising precision medicine approach for patients with specific LQT3 mutations.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.