通过分离和交错碳框架实现长循环水性Zn-Mn3O4电池。

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yujing Pan, Shiyong Zuo, Guo Ai, Jianjun Wei, Xiaochen Zhao, Wenfeng Mao
{"title":"通过分离和交错碳框架实现长循环水性Zn-Mn3O4电池。","authors":"Yujing Pan,&nbsp;Shiyong Zuo,&nbsp;Guo Ai,&nbsp;Jianjun Wei,&nbsp;Xiaochen Zhao,&nbsp;Wenfeng Mao","doi":"10.1002/smtd.202401626","DOIUrl":null,"url":null,"abstract":"<p>Mn<sub>3</sub>O<sub>4</sub> is a promising candidate for aqueous zinc ion batteries (ZIBs) due to its high theoretical capacity (468.5 mAh g<sup>−1</sup>) and environmental friendliness, while its practical application is hindered by slow kinetics and rapid capacity degradation. Herein, a porous Mn<sub>3</sub>O<sub>4</sub> with segregated and interlaced carbon framework (HCF-Mn<sub>3</sub>O<sub>4</sub>) is introduced. The in situ hydro-assembled interlaced carbon nanotube (CNT) forms a porous structure enhancing electron conduction and accelerating Zn<sup>2+</sup> transport; while the segregated CNT network serves as an encapsulation layer to improve mechanical stability. Together, these features facilitate the simultaneous insertion and transformation of H<sup>+</sup>/Zn<sup>2+</sup> and enhance Zn<sup>2+</sup> diffusion kinetics. As a result, HCF-Mn<sub>3</sub>O<sub>4</sub> achieves a high specific capacity of 474 mAh g<sup>−1</sup> at 0.05 A g<sup>−1</sup>, excellent rate performance of 178 mAh g<sup>−1</sup> at 1.50 A g<sup>−1</sup>, and stable cycling over 3000 cycles with minimal capacity decay (≈0.02% per cycle). This design offers new opportunities for developing high-rate, long-lasting ZIBs.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 5","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling Long-cycling Aqueous Zn-Mn3O4 Batteries via Segregated and Interlaced Carbon Frameworks\",\"authors\":\"Yujing Pan,&nbsp;Shiyong Zuo,&nbsp;Guo Ai,&nbsp;Jianjun Wei,&nbsp;Xiaochen Zhao,&nbsp;Wenfeng Mao\",\"doi\":\"10.1002/smtd.202401626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mn<sub>3</sub>O<sub>4</sub> is a promising candidate for aqueous zinc ion batteries (ZIBs) due to its high theoretical capacity (468.5 mAh g<sup>−1</sup>) and environmental friendliness, while its practical application is hindered by slow kinetics and rapid capacity degradation. Herein, a porous Mn<sub>3</sub>O<sub>4</sub> with segregated and interlaced carbon framework (HCF-Mn<sub>3</sub>O<sub>4</sub>) is introduced. The in situ hydro-assembled interlaced carbon nanotube (CNT) forms a porous structure enhancing electron conduction and accelerating Zn<sup>2+</sup> transport; while the segregated CNT network serves as an encapsulation layer to improve mechanical stability. Together, these features facilitate the simultaneous insertion and transformation of H<sup>+</sup>/Zn<sup>2+</sup> and enhance Zn<sup>2+</sup> diffusion kinetics. As a result, HCF-Mn<sub>3</sub>O<sub>4</sub> achieves a high specific capacity of 474 mAh g<sup>−1</sup> at 0.05 A g<sup>−1</sup>, excellent rate performance of 178 mAh g<sup>−1</sup> at 1.50 A g<sup>−1</sup>, and stable cycling over 3000 cycles with minimal capacity decay (≈0.02% per cycle). This design offers new opportunities for developing high-rate, long-lasting ZIBs.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\"9 5\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202401626\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202401626","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于Mn3O4具有较高的理论容量(468.5 mAh g-1)和环境友好性,是一种很有前途的水性锌离子电池(ZIBs)候选者,但其实际应用受到动力学缓慢和容量快速退化的阻碍。本文介绍了一种具有分离和交错碳骨架的多孔Mn3O4 (HCF-Mn3O4)。原位水组装的交错碳纳米管(CNT)形成多孔结构,增强电子传导,加速Zn2+输运;而隔离的碳纳米管网络作为封装层,提高机械稳定性。这些特征共同促进了H+/Zn2+的同时插入和转化,增强了Zn2+的扩散动力学。结果表明,HCF-Mn3O4在0.05 a g-1时具有474 mAh g-1的高比容量,在1.50 a g-1时具有178 mAh g-1的优异倍率性能,并且在3000次循环中稳定循环,容量衰减最小(每循环≈0.02%)。这种设计为开发高速率、持久的zib提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enabling Long-cycling Aqueous Zn-Mn3O4 Batteries via Segregated and Interlaced Carbon Frameworks

Enabling Long-cycling Aqueous Zn-Mn3O4 Batteries via Segregated and Interlaced Carbon Frameworks

Mn3O4 is a promising candidate for aqueous zinc ion batteries (ZIBs) due to its high theoretical capacity (468.5 mAh g−1) and environmental friendliness, while its practical application is hindered by slow kinetics and rapid capacity degradation. Herein, a porous Mn3O4 with segregated and interlaced carbon framework (HCF-Mn3O4) is introduced. The in situ hydro-assembled interlaced carbon nanotube (CNT) forms a porous structure enhancing electron conduction and accelerating Zn2+ transport; while the segregated CNT network serves as an encapsulation layer to improve mechanical stability. Together, these features facilitate the simultaneous insertion and transformation of H+/Zn2+ and enhance Zn2+ diffusion kinetics. As a result, HCF-Mn3O4 achieves a high specific capacity of 474 mAh g−1 at 0.05 A g−1, excellent rate performance of 178 mAh g−1 at 1.50 A g−1, and stable cycling over 3000 cycles with minimal capacity decay (≈0.02% per cycle). This design offers new opportunities for developing high-rate, long-lasting ZIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信