{"title":"雪莲注射液抗阿霉素心脏毒性的网络药理学分析及实验验证。","authors":"Ding Wang, Yu Jin, Mengyu Yang, Yajing Xue, Xiaotong Zhang, Yanli Guo, Xinzhi Li, Ketao Ma","doi":"10.3724/abbs.2024170","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin (Dox) is widely utilized in the clinical treatment of various cancers. Despite its efficacy, Dox induces numerous adverse effects in humans with significant cardiotoxicity, posing a major limitation to its use. <i>Saussurea involucrata</i> injection (SII), derived from <i>Saussurea involucrata</i>, exhibits notable anti-inflammatory and anti-oxidative stress properties. However, its potential protective effects against Dox-induced cardiotoxicity (DIC) remain unexplored. In this study, we investigate the ability of SII to mitigate DIC and elucidate the underlying mechanisms through experimental research and network pharmacology analysis. Results from both <i>in vitro</i> and <i>in vivo</i> experiments reveal that SII treatment significantly improves Dox-induced cardiac dysfunction, reducing pathological alterations and fibrosis in cardiomyocytes. Moreover, SII has cardioprotective effects by diminishing the inflammation, oxidative stress, and apoptosis triggered by Dox. Network pharmacological analysis further shows that SII downregulates P53 protein expression by activating the AKT/MDM2 signaling pathway, thus attenuating DIC. In conclusion, this study confirms that SII mitigates DIC through downregulation of the AKT/MDM2/P53 signaling pathway, suggesting a promising therapeutic strategy for alleviating DIC.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardioprotective effect of <i>Saussurea involucrata</i> injection against Doxorubicin-induced cardiotoxicity by network pharmacology analysis and experimental verification.\",\"authors\":\"Ding Wang, Yu Jin, Mengyu Yang, Yajing Xue, Xiaotong Zhang, Yanli Guo, Xinzhi Li, Ketao Ma\",\"doi\":\"10.3724/abbs.2024170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Doxorubicin (Dox) is widely utilized in the clinical treatment of various cancers. Despite its efficacy, Dox induces numerous adverse effects in humans with significant cardiotoxicity, posing a major limitation to its use. <i>Saussurea involucrata</i> injection (SII), derived from <i>Saussurea involucrata</i>, exhibits notable anti-inflammatory and anti-oxidative stress properties. However, its potential protective effects against Dox-induced cardiotoxicity (DIC) remain unexplored. In this study, we investigate the ability of SII to mitigate DIC and elucidate the underlying mechanisms through experimental research and network pharmacology analysis. Results from both <i>in vitro</i> and <i>in vivo</i> experiments reveal that SII treatment significantly improves Dox-induced cardiac dysfunction, reducing pathological alterations and fibrosis in cardiomyocytes. Moreover, SII has cardioprotective effects by diminishing the inflammation, oxidative stress, and apoptosis triggered by Dox. Network pharmacological analysis further shows that SII downregulates P53 protein expression by activating the AKT/MDM2 signaling pathway, thus attenuating DIC. In conclusion, this study confirms that SII mitigates DIC through downregulation of the AKT/MDM2/P53 signaling pathway, suggesting a promising therapeutic strategy for alleviating DIC.</p>\",\"PeriodicalId\":6978,\"journal\":{\"name\":\"Acta biochimica et biophysica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta biochimica et biophysica Sinica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3724/abbs.2024170\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biochimica et biophysica Sinica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3724/abbs.2024170","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cardioprotective effect of Saussurea involucrata injection against Doxorubicin-induced cardiotoxicity by network pharmacology analysis and experimental verification.
Doxorubicin (Dox) is widely utilized in the clinical treatment of various cancers. Despite its efficacy, Dox induces numerous adverse effects in humans with significant cardiotoxicity, posing a major limitation to its use. Saussurea involucrata injection (SII), derived from Saussurea involucrata, exhibits notable anti-inflammatory and anti-oxidative stress properties. However, its potential protective effects against Dox-induced cardiotoxicity (DIC) remain unexplored. In this study, we investigate the ability of SII to mitigate DIC and elucidate the underlying mechanisms through experimental research and network pharmacology analysis. Results from both in vitro and in vivo experiments reveal that SII treatment significantly improves Dox-induced cardiac dysfunction, reducing pathological alterations and fibrosis in cardiomyocytes. Moreover, SII has cardioprotective effects by diminishing the inflammation, oxidative stress, and apoptosis triggered by Dox. Network pharmacological analysis further shows that SII downregulates P53 protein expression by activating the AKT/MDM2 signaling pathway, thus attenuating DIC. In conclusion, this study confirms that SII mitigates DIC through downregulation of the AKT/MDM2/P53 signaling pathway, suggesting a promising therapeutic strategy for alleviating DIC.
期刊介绍:
Acta Biochimica et Biophysica Sinica (ABBS) is an internationally peer-reviewed journal sponsored by the Shanghai Institute of Biochemistry and Cell Biology (CAS). ABBS aims to publish original research articles and review articles in diverse fields of biochemical research including Protein Science, Nucleic Acids, Molecular Biology, Cell Biology, Biophysics, Immunology, and Signal Transduction, etc.