{"title":"工业大麻通过重塑根际真菌群落来适应镉胁迫。","authors":"Tingting Feng, Zhuang Meng, Huifen Li, Guohui Chen, Chang'e Liu, Kailei Tang, Jinquan Chen","doi":"10.1016/j.scitotenv.2024.177851","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidence indicates that plants under environmental stress can actively seek the help of microbes ('cry-for-help' hypothesis). However, empirical evidence underlying this strategy is limited under metal-stress conditions. Here, we employed integrated microbial community profiling in cadmium (Cd) polluted soil and culture-based methods to investigate the three-way interactions between the industrial hemp (Cannabis Sativa L.), rhizospheric microbes, and Cd stress. Results from the pot and three cycles of the successful hemp planting experiments showed that Cd stress significantly affected the composition of rhizosphere fungi in industrial hemp and induced enrichment of the fungal operational taxonomic unit (OTU)3 (Cladosporium). A representative of OTU3 (strain DM-2) was successfully isolated. In a hydroponic experiment, inoculation of DM-2 significantly increased the shoot length (by 25.84 %) and fresh weight (by 92.66 %) of hemp seedlings when compared to the absence of DM-2 under the Cd stress. The findings indicate that DM-2 inoculation could effectively alleviate the Cd stress in hemp seedlings. Metabolomic analysis of spent media with or without DM-2 revealed the association of DM-2 with the transformation of root exudates to melatonin, which may be a key chemical in plant-microbe interactions against abiotic stresses. The findings will inform efforts to manipulate the root microbiome to enhance plant growth in polluted environments.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"957 ","pages":"177851"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industrial hemp (Cannabis sativa L.) adapts to cadmium stress by reshaping rhizosphere fungal community.\",\"authors\":\"Tingting Feng, Zhuang Meng, Huifen Li, Guohui Chen, Chang'e Liu, Kailei Tang, Jinquan Chen\",\"doi\":\"10.1016/j.scitotenv.2024.177851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasing evidence indicates that plants under environmental stress can actively seek the help of microbes ('cry-for-help' hypothesis). However, empirical evidence underlying this strategy is limited under metal-stress conditions. Here, we employed integrated microbial community profiling in cadmium (Cd) polluted soil and culture-based methods to investigate the three-way interactions between the industrial hemp (Cannabis Sativa L.), rhizospheric microbes, and Cd stress. Results from the pot and three cycles of the successful hemp planting experiments showed that Cd stress significantly affected the composition of rhizosphere fungi in industrial hemp and induced enrichment of the fungal operational taxonomic unit (OTU)3 (Cladosporium). A representative of OTU3 (strain DM-2) was successfully isolated. In a hydroponic experiment, inoculation of DM-2 significantly increased the shoot length (by 25.84 %) and fresh weight (by 92.66 %) of hemp seedlings when compared to the absence of DM-2 under the Cd stress. The findings indicate that DM-2 inoculation could effectively alleviate the Cd stress in hemp seedlings. Metabolomic analysis of spent media with or without DM-2 revealed the association of DM-2 with the transformation of root exudates to melatonin, which may be a key chemical in plant-microbe interactions against abiotic stresses. The findings will inform efforts to manipulate the root microbiome to enhance plant growth in polluted environments.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"957 \",\"pages\":\"177851\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.177851\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177851","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Industrial hemp (Cannabis sativa L.) adapts to cadmium stress by reshaping rhizosphere fungal community.
Increasing evidence indicates that plants under environmental stress can actively seek the help of microbes ('cry-for-help' hypothesis). However, empirical evidence underlying this strategy is limited under metal-stress conditions. Here, we employed integrated microbial community profiling in cadmium (Cd) polluted soil and culture-based methods to investigate the three-way interactions between the industrial hemp (Cannabis Sativa L.), rhizospheric microbes, and Cd stress. Results from the pot and three cycles of the successful hemp planting experiments showed that Cd stress significantly affected the composition of rhizosphere fungi in industrial hemp and induced enrichment of the fungal operational taxonomic unit (OTU)3 (Cladosporium). A representative of OTU3 (strain DM-2) was successfully isolated. In a hydroponic experiment, inoculation of DM-2 significantly increased the shoot length (by 25.84 %) and fresh weight (by 92.66 %) of hemp seedlings when compared to the absence of DM-2 under the Cd stress. The findings indicate that DM-2 inoculation could effectively alleviate the Cd stress in hemp seedlings. Metabolomic analysis of spent media with or without DM-2 revealed the association of DM-2 with the transformation of root exudates to melatonin, which may be a key chemical in plant-microbe interactions against abiotic stresses. The findings will inform efforts to manipulate the root microbiome to enhance plant growth in polluted environments.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.