探讨近似对模拟价态激发x射线光谱的影响。

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2024-12-19 Epub Date: 2024-12-04 DOI:10.1021/acs.jpca.4c06150
Thomas J Penfold, Basile F E Curchod
{"title":"探讨近似对模拟价态激发x射线光谱的影响。","authors":"Thomas J Penfold, Basile F E Curchod","doi":"10.1021/acs.jpca.4c06150","DOIUrl":null,"url":null,"abstract":"<p><p>First-principles simulations of excited-state X-ray spectra are becoming increasingly important to interpret the wealth of electronic and geometric information contained within femtosecond X-ray absorption spectra recorded at X-ray Free Electron Lasers (X-FELs). However, because the transition dipole matrix elements must be calculated between two excited states (i.e., the valence excited state and the final core excited state arising from the initial valence excited state) of very different energies, this can be challenging and time-consuming to compute. Herein using two molecules, protonated formaldimine and cyclobutanone, we assess the ability of <i>n</i>-electron valence-state perturbation theory (NEVPT2), equation-of-motion coupled-cluster theory (EOM-CCSD), linear-response time-dependent density functional theory (LR-TDDFT) and the maximum overlap method (MOM) to describe excited state X-ray spectra. Our study focuses in particular on the behavior of these methods away from the Franck-Condon geometry and in the vicinity of important topological features of excited-state potential energy surfaces, namely, conical intersections. We demonstrate that the primary feature of excited-state X-ray spectra is associated with the core electron filling the hole created by the initial valence excitation, a process that all of the methods can capture. Higher energy states are generally weaker, but importantly much more sensitive to the nature of the reference electronic wave function. As molecular structures evolve away from the Franck-Condon geometry, changes in the spectral shape closely follow the underlying valence excitation, highlighting the importance of accurately describing the initial valence excitation to simulate the excited-state X-ray absorption spectra.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"10826-10836"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664592/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the Influence of Approximations for Simulating Valence Excited X-ray Spectra.\",\"authors\":\"Thomas J Penfold, Basile F E Curchod\",\"doi\":\"10.1021/acs.jpca.4c06150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>First-principles simulations of excited-state X-ray spectra are becoming increasingly important to interpret the wealth of electronic and geometric information contained within femtosecond X-ray absorption spectra recorded at X-ray Free Electron Lasers (X-FELs). However, because the transition dipole matrix elements must be calculated between two excited states (i.e., the valence excited state and the final core excited state arising from the initial valence excited state) of very different energies, this can be challenging and time-consuming to compute. Herein using two molecules, protonated formaldimine and cyclobutanone, we assess the ability of <i>n</i>-electron valence-state perturbation theory (NEVPT2), equation-of-motion coupled-cluster theory (EOM-CCSD), linear-response time-dependent density functional theory (LR-TDDFT) and the maximum overlap method (MOM) to describe excited state X-ray spectra. Our study focuses in particular on the behavior of these methods away from the Franck-Condon geometry and in the vicinity of important topological features of excited-state potential energy surfaces, namely, conical intersections. We demonstrate that the primary feature of excited-state X-ray spectra is associated with the core electron filling the hole created by the initial valence excitation, a process that all of the methods can capture. Higher energy states are generally weaker, but importantly much more sensitive to the nature of the reference electronic wave function. As molecular structures evolve away from the Franck-Condon geometry, changes in the spectral shape closely follow the underlying valence excitation, highlighting the importance of accurately describing the initial valence excitation to simulate the excited-state X-ray absorption spectra.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"10826-10836\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664592/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c06150\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c06150","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

激发态x射线光谱的第一性原理模拟对于解释x射线自由电子激光器(X-FELs)记录的飞秒x射线吸收光谱中包含的丰富的电子和几何信息变得越来越重要。然而,由于跃迁偶极矩阵元素必须在两个能量非常不同的激发态(即价态激发态和由初始价态激发态产生的最终核心激发态)之间计算,这可能是具有挑战性和耗时的计算。本文使用质子化甲醛二胺和环丁酮两种分子,评估了n电子价态摄动理论(NEVPT2)、运动方程耦合簇理论(EOM-CCSD)、线性响应时变密度泛函理论(LR-TDDFT)和最大重叠法(MOM)描述激发态x射线光谱的能力。我们的研究特别集中在这些方法的行为远离弗兰克-康登几何和附近的激发态势能面,即圆锥交点的重要拓扑特征。我们证明了激发态x射线光谱的主要特征与核心电子填充由初始价激发产生的空穴有关,这是一个所有方法都可以捕获的过程。高能态通常较弱,但重要的是对参考电子波函数的性质更敏感。随着分子结构逐渐远离Franck-Condon几何结构,光谱形状的变化与底层的价态激发密切相关,这突出了准确描述初始价态激发对模拟激发态x射线吸收光谱的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Influence of Approximations for Simulating Valence Excited X-ray Spectra.

First-principles simulations of excited-state X-ray spectra are becoming increasingly important to interpret the wealth of electronic and geometric information contained within femtosecond X-ray absorption spectra recorded at X-ray Free Electron Lasers (X-FELs). However, because the transition dipole matrix elements must be calculated between two excited states (i.e., the valence excited state and the final core excited state arising from the initial valence excited state) of very different energies, this can be challenging and time-consuming to compute. Herein using two molecules, protonated formaldimine and cyclobutanone, we assess the ability of n-electron valence-state perturbation theory (NEVPT2), equation-of-motion coupled-cluster theory (EOM-CCSD), linear-response time-dependent density functional theory (LR-TDDFT) and the maximum overlap method (MOM) to describe excited state X-ray spectra. Our study focuses in particular on the behavior of these methods away from the Franck-Condon geometry and in the vicinity of important topological features of excited-state potential energy surfaces, namely, conical intersections. We demonstrate that the primary feature of excited-state X-ray spectra is associated with the core electron filling the hole created by the initial valence excitation, a process that all of the methods can capture. Higher energy states are generally weaker, but importantly much more sensitive to the nature of the reference electronic wave function. As molecular structures evolve away from the Franck-Condon geometry, changes in the spectral shape closely follow the underlying valence excitation, highlighting the importance of accurately describing the initial valence excitation to simulate the excited-state X-ray absorption spectra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信