GFP法内酰化作为选择性标记外泌体的合适策略。

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-12-16 Epub Date: 2024-12-05 DOI:10.1021/acsabm.4c01112
Rebecca Piccarducci, Lorenzo Germelli, Alessandra Falleni, Lucrezia Luisotti, Benedetta Masciulli, Giovanni Signore, Chiara Migone, Angela Fabiano, Ranieri Bizzarri, Anna Maria Piras, Chiara Giacomelli, Laura Marchetti, Claudia Martini
{"title":"GFP法内酰化作为选择性标记外泌体的合适策略。","authors":"Rebecca Piccarducci, Lorenzo Germelli, Alessandra Falleni, Lucrezia Luisotti, Benedetta Masciulli, Giovanni Signore, Chiara Migone, Angela Fabiano, Ranieri Bizzarri, Anna Maria Piras, Chiara Giacomelli, Laura Marchetti, Claudia Martini","doi":"10.1021/acsabm.4c01112","DOIUrl":null,"url":null,"abstract":"<p><p>Exosomes are small extracellular vesicles (EVs) constituting fully biological, cell-derived nanovesicles with great potential in cell-to-cell communication and drug delivery applications. The current gold standard for EV labeling and tracking is represented by fluorescent lipophilic dyes which, however, importantly lack selectivity, due to their unconditional affinity for lipids. Herein, an alternative EV fluorescent labeling approach is in-depth evaluated, by taking advantage of green fluorescent protein (GFP) farnesylation (GFP-f), a post-translational modification to directly anchor GFP to the EV membrane. The performance of GFP-f is analyzed, in terms of selectivity and efficiency, in several typical EV experimental setups such as delivery in recipient cells, surface engineering, and cargo loading. First, the capability of GFP and GFP-f to label exosomes was compared, showing significantly higher GFP protein levels and fluorescence intensity in GFP-f- than in GFP-labeled exosomes, highlighting the advantage of directly anchoring the GFP to the EV cell membrane. Then, the GFP-f tag was further compared to Vybrant DiD lipophilic dye labeling in exosome uptake studies, by capturing EV intracellular fluorescence in a time- and concentration-dependent manner. The internalization assay revealed a particular ability of GFP-f to monitor the uptake of tagged exosomes into recipient cells, with a significant peak of intensity reached 12 h after administration by GFP-f but not Vybrant-labeled EVs. Finally, the GFP-f labeling capability was challenged in the presence of a surface modification of exosomes and after transfection for siRNA loading. Results showed that both procedures can influence GFP-f performance compared to naïve GFP-f exosomes, although fluorescence is importantly maintained in both cases. Overall, these data provide direct insight into the advantages and limitations of GFP-f as a tagging protein for selectively and accurately tracking the exosome route from isolation to uptake in recipient cells, also in the context of EV bioengineering applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"8305-8318"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GFP Farnesylation as a Suitable Strategy for Selectively Tagging Exosomes.\",\"authors\":\"Rebecca Piccarducci, Lorenzo Germelli, Alessandra Falleni, Lucrezia Luisotti, Benedetta Masciulli, Giovanni Signore, Chiara Migone, Angela Fabiano, Ranieri Bizzarri, Anna Maria Piras, Chiara Giacomelli, Laura Marchetti, Claudia Martini\",\"doi\":\"10.1021/acsabm.4c01112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exosomes are small extracellular vesicles (EVs) constituting fully biological, cell-derived nanovesicles with great potential in cell-to-cell communication and drug delivery applications. The current gold standard for EV labeling and tracking is represented by fluorescent lipophilic dyes which, however, importantly lack selectivity, due to their unconditional affinity for lipids. Herein, an alternative EV fluorescent labeling approach is in-depth evaluated, by taking advantage of green fluorescent protein (GFP) farnesylation (GFP-f), a post-translational modification to directly anchor GFP to the EV membrane. The performance of GFP-f is analyzed, in terms of selectivity and efficiency, in several typical EV experimental setups such as delivery in recipient cells, surface engineering, and cargo loading. First, the capability of GFP and GFP-f to label exosomes was compared, showing significantly higher GFP protein levels and fluorescence intensity in GFP-f- than in GFP-labeled exosomes, highlighting the advantage of directly anchoring the GFP to the EV cell membrane. Then, the GFP-f tag was further compared to Vybrant DiD lipophilic dye labeling in exosome uptake studies, by capturing EV intracellular fluorescence in a time- and concentration-dependent manner. The internalization assay revealed a particular ability of GFP-f to monitor the uptake of tagged exosomes into recipient cells, with a significant peak of intensity reached 12 h after administration by GFP-f but not Vybrant-labeled EVs. Finally, the GFP-f labeling capability was challenged in the presence of a surface modification of exosomes and after transfection for siRNA loading. Results showed that both procedures can influence GFP-f performance compared to naïve GFP-f exosomes, although fluorescence is importantly maintained in both cases. Overall, these data provide direct insight into the advantages and limitations of GFP-f as a tagging protein for selectively and accurately tracking the exosome route from isolation to uptake in recipient cells, also in the context of EV bioengineering applications.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"8305-8318\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.4c01112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

外泌体是小的细胞外囊泡(ev),由完全生物的细胞来源的纳米囊泡组成,在细胞间通讯和药物递送应用中具有很大的潜力。目前EV标记和跟踪的金标准是荧光亲脂染料,然而,由于它们对脂质的无条件亲和力,重要的是缺乏选择性。本文深入评估了另一种EV荧光标记方法,即利用绿色荧光蛋白(GFP)法内酰化(GFP-f),一种将GFP直接锚定在EV膜上的翻译后修饰。在几种典型的EV实验设置中,如在受体细胞中递送、表面工程和货物装载中,分析了GFP-f的选择性和效率。首先,比较了GFP和GFP-f标记外泌体的能力,发现GFP-f中GFP蛋白水平和荧光强度明显高于GFP标记的外泌体,突出了GFP直接锚定在EV细胞膜上的优势。然后,通过以时间和浓度依赖的方式捕获EV细胞内荧光,进一步将GFP-f标签与Vybrant DiD亲脂性染料标记在外泌体摄取研究中进行比较。内化实验显示GFP-f具有监测标记外泌体进入受体细胞的特殊能力,在GFP-f给药后12小时达到显著的强度峰值,而vybrant标记的ev则没有。最后,外泌体表面修饰和siRNA转染后,GFP-f的标记能力受到挑战。结果表明,与naïve GFP-f外泌体相比,这两种方法都可以影响GFP-f的性能,尽管在这两种情况下荧光都得到了重要的维持。总的来说,这些数据为GFP-f作为一种标记蛋白的优势和局限性提供了直接的见解,用于选择性和准确地跟踪外泌体从分离到受体细胞摄取的途径,也用于EV生物工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GFP Farnesylation as a Suitable Strategy for Selectively Tagging Exosomes.

Exosomes are small extracellular vesicles (EVs) constituting fully biological, cell-derived nanovesicles with great potential in cell-to-cell communication and drug delivery applications. The current gold standard for EV labeling and tracking is represented by fluorescent lipophilic dyes which, however, importantly lack selectivity, due to their unconditional affinity for lipids. Herein, an alternative EV fluorescent labeling approach is in-depth evaluated, by taking advantage of green fluorescent protein (GFP) farnesylation (GFP-f), a post-translational modification to directly anchor GFP to the EV membrane. The performance of GFP-f is analyzed, in terms of selectivity and efficiency, in several typical EV experimental setups such as delivery in recipient cells, surface engineering, and cargo loading. First, the capability of GFP and GFP-f to label exosomes was compared, showing significantly higher GFP protein levels and fluorescence intensity in GFP-f- than in GFP-labeled exosomes, highlighting the advantage of directly anchoring the GFP to the EV cell membrane. Then, the GFP-f tag was further compared to Vybrant DiD lipophilic dye labeling in exosome uptake studies, by capturing EV intracellular fluorescence in a time- and concentration-dependent manner. The internalization assay revealed a particular ability of GFP-f to monitor the uptake of tagged exosomes into recipient cells, with a significant peak of intensity reached 12 h after administration by GFP-f but not Vybrant-labeled EVs. Finally, the GFP-f labeling capability was challenged in the presence of a surface modification of exosomes and after transfection for siRNA loading. Results showed that both procedures can influence GFP-f performance compared to naïve GFP-f exosomes, although fluorescence is importantly maintained in both cases. Overall, these data provide direct insight into the advantages and limitations of GFP-f as a tagging protein for selectively and accurately tracking the exosome route from isolation to uptake in recipient cells, also in the context of EV bioengineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信