Halil Burak Kaybal, Hasan Ulus, Fatih Cacik, Volkan Eskizeybek, Ahmet Avci
{"title":"不同纤维类型增强的液体Elium®热塑性基复合材料的多尺度力学行为:来自纤维-基质粘附相互作用的见解","authors":"Halil Burak Kaybal, Hasan Ulus, Fatih Cacik, Volkan Eskizeybek, Ahmet Avci","doi":"10.1007/s12221-024-00781-4","DOIUrl":null,"url":null,"abstract":"<div><p>Elium<sup>®</sup> liquid thermoplastic resin, with room-temperature curing and recyclability, enables large-scale production. However, limited research exists on the fiber–matrix interface, and understanding micro-scale interactions is key to influencing the composite<sup>’</sup>s macro-scale mechanical properties. This study investigates the interfacial adhesion of glass, carbon, basalt, and aramid fibers-reinforced liquid Elium<sup>®</sup> thermoplastic matrix composites at micro-, meso-, and macro-scales. Contact angle measurements show 53-56º for glass fibers, indicating superior wettability with the Elium<sup>®</sup> matrix, while carbon, aramid, and basalt fibers exhibit 58-62º, 73-74º, and 79-86º, respectively. Micro-bond tests demonstrate the highest load-carrying capacity in the interface between glass fibers and the matrix, with glass fibers carrying 11.4% more load than carbon fibers and 25.8% more than basalt fibers. Fiber bundle tests, including transverse and 45° fiber bundle tests, highlight the superior load-carrying performance of glass fibers, with all fiber types showing increased load-carrying capacities in the 45° tests. The micro-scale and meso-scale data obtained from micro-bond and fiber bundle tests corroborated the results of the macro-scale interlaminar shear stress (ILSS) tests, confirming the significant influence of the fiber–matrix interface on the mechanical integrity of the composites. The shear strength at the glass/Elium<sup>®</sup> interface was 47.54 MPa, which was 8.5% higher than carbon, 20.3% higher than aramid, and 25.9% higher than basalt interfaces. These findings advance our understanding of the mechanical behavior and interfacial adhesion in thermoplastic matrix composites. They underscore the crucial role of the fiber/matrix interface in determining the mechanical properties of composites and offer insights into the compatibility of diverse fiber reinforcements with the innovative Elium<sup>®</sup> matrix.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 12","pages":"4935 - 4950"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Scale Mechanical Behavior of Liquid Elium® Based Thermoplastic Matrix Composites Reinforced with Different Fiber Types: Insights from Fiber–Matrix Adhesion Interactions\",\"authors\":\"Halil Burak Kaybal, Hasan Ulus, Fatih Cacik, Volkan Eskizeybek, Ahmet Avci\",\"doi\":\"10.1007/s12221-024-00781-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Elium<sup>®</sup> liquid thermoplastic resin, with room-temperature curing and recyclability, enables large-scale production. However, limited research exists on the fiber–matrix interface, and understanding micro-scale interactions is key to influencing the composite<sup>’</sup>s macro-scale mechanical properties. This study investigates the interfacial adhesion of glass, carbon, basalt, and aramid fibers-reinforced liquid Elium<sup>®</sup> thermoplastic matrix composites at micro-, meso-, and macro-scales. Contact angle measurements show 53-56º for glass fibers, indicating superior wettability with the Elium<sup>®</sup> matrix, while carbon, aramid, and basalt fibers exhibit 58-62º, 73-74º, and 79-86º, respectively. Micro-bond tests demonstrate the highest load-carrying capacity in the interface between glass fibers and the matrix, with glass fibers carrying 11.4% more load than carbon fibers and 25.8% more than basalt fibers. Fiber bundle tests, including transverse and 45° fiber bundle tests, highlight the superior load-carrying performance of glass fibers, with all fiber types showing increased load-carrying capacities in the 45° tests. The micro-scale and meso-scale data obtained from micro-bond and fiber bundle tests corroborated the results of the macro-scale interlaminar shear stress (ILSS) tests, confirming the significant influence of the fiber–matrix interface on the mechanical integrity of the composites. The shear strength at the glass/Elium<sup>®</sup> interface was 47.54 MPa, which was 8.5% higher than carbon, 20.3% higher than aramid, and 25.9% higher than basalt interfaces. These findings advance our understanding of the mechanical behavior and interfacial adhesion in thermoplastic matrix composites. They underscore the crucial role of the fiber/matrix interface in determining the mechanical properties of composites and offer insights into the compatibility of diverse fiber reinforcements with the innovative Elium<sup>®</sup> matrix.</p></div>\",\"PeriodicalId\":557,\"journal\":{\"name\":\"Fibers and Polymers\",\"volume\":\"25 12\",\"pages\":\"4935 - 4950\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers and Polymers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12221-024-00781-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00781-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Multi-Scale Mechanical Behavior of Liquid Elium® Based Thermoplastic Matrix Composites Reinforced with Different Fiber Types: Insights from Fiber–Matrix Adhesion Interactions
Elium® liquid thermoplastic resin, with room-temperature curing and recyclability, enables large-scale production. However, limited research exists on the fiber–matrix interface, and understanding micro-scale interactions is key to influencing the composite’s macro-scale mechanical properties. This study investigates the interfacial adhesion of glass, carbon, basalt, and aramid fibers-reinforced liquid Elium® thermoplastic matrix composites at micro-, meso-, and macro-scales. Contact angle measurements show 53-56º for glass fibers, indicating superior wettability with the Elium® matrix, while carbon, aramid, and basalt fibers exhibit 58-62º, 73-74º, and 79-86º, respectively. Micro-bond tests demonstrate the highest load-carrying capacity in the interface between glass fibers and the matrix, with glass fibers carrying 11.4% more load than carbon fibers and 25.8% more than basalt fibers. Fiber bundle tests, including transverse and 45° fiber bundle tests, highlight the superior load-carrying performance of glass fibers, with all fiber types showing increased load-carrying capacities in the 45° tests. The micro-scale and meso-scale data obtained from micro-bond and fiber bundle tests corroborated the results of the macro-scale interlaminar shear stress (ILSS) tests, confirming the significant influence of the fiber–matrix interface on the mechanical integrity of the composites. The shear strength at the glass/Elium® interface was 47.54 MPa, which was 8.5% higher than carbon, 20.3% higher than aramid, and 25.9% higher than basalt interfaces. These findings advance our understanding of the mechanical behavior and interfacial adhesion in thermoplastic matrix composites. They underscore the crucial role of the fiber/matrix interface in determining the mechanical properties of composites and offer insights into the compatibility of diverse fiber reinforcements with the innovative Elium® matrix.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers