不同纤维类型增强的液体Elium®热塑性基复合材料的多尺度力学行为:来自纤维-基质粘附相互作用的见解

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
Halil Burak Kaybal, Hasan Ulus, Fatih Cacik, Volkan Eskizeybek, Ahmet Avci
{"title":"不同纤维类型增强的液体Elium®热塑性基复合材料的多尺度力学行为:来自纤维-基质粘附相互作用的见解","authors":"Halil Burak Kaybal,&nbsp;Hasan Ulus,&nbsp;Fatih Cacik,&nbsp;Volkan Eskizeybek,&nbsp;Ahmet Avci","doi":"10.1007/s12221-024-00781-4","DOIUrl":null,"url":null,"abstract":"<div><p>Elium<sup>®</sup> liquid thermoplastic resin, with room-temperature curing and recyclability, enables large-scale production. However, limited research exists on the fiber–matrix interface, and understanding micro-scale interactions is key to influencing the composite<sup>’</sup>s macro-scale mechanical properties. This study investigates the interfacial adhesion of glass, carbon, basalt, and aramid fibers-reinforced liquid Elium<sup>®</sup> thermoplastic matrix composites at micro-, meso-, and macro-scales. Contact angle measurements show 53-56º for glass fibers, indicating superior wettability with the Elium<sup>®</sup> matrix, while carbon, aramid, and basalt fibers exhibit 58-62º, 73-74º, and 79-86º, respectively. Micro-bond tests demonstrate the highest load-carrying capacity in the interface between glass fibers and the matrix, with glass fibers carrying 11.4% more load than carbon fibers and 25.8% more than basalt fibers. Fiber bundle tests, including transverse and 45° fiber bundle tests, highlight the superior load-carrying performance of glass fibers, with all fiber types showing increased load-carrying capacities in the 45° tests. The micro-scale and meso-scale data obtained from micro-bond and fiber bundle tests corroborated the results of the macro-scale interlaminar shear stress (ILSS) tests, confirming the significant influence of the fiber–matrix interface on the mechanical integrity of the composites. The shear strength at the glass/Elium<sup>®</sup> interface was 47.54 MPa, which was 8.5% higher than carbon, 20.3% higher than aramid, and 25.9% higher than basalt interfaces. These findings advance our understanding of the mechanical behavior and interfacial adhesion in thermoplastic matrix composites. They underscore the crucial role of the fiber/matrix interface in determining the mechanical properties of composites and offer insights into the compatibility of diverse fiber reinforcements with the innovative Elium<sup>®</sup> matrix.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 12","pages":"4935 - 4950"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Scale Mechanical Behavior of Liquid Elium® Based Thermoplastic Matrix Composites Reinforced with Different Fiber Types: Insights from Fiber–Matrix Adhesion Interactions\",\"authors\":\"Halil Burak Kaybal,&nbsp;Hasan Ulus,&nbsp;Fatih Cacik,&nbsp;Volkan Eskizeybek,&nbsp;Ahmet Avci\",\"doi\":\"10.1007/s12221-024-00781-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Elium<sup>®</sup> liquid thermoplastic resin, with room-temperature curing and recyclability, enables large-scale production. However, limited research exists on the fiber–matrix interface, and understanding micro-scale interactions is key to influencing the composite<sup>’</sup>s macro-scale mechanical properties. This study investigates the interfacial adhesion of glass, carbon, basalt, and aramid fibers-reinforced liquid Elium<sup>®</sup> thermoplastic matrix composites at micro-, meso-, and macro-scales. Contact angle measurements show 53-56º for glass fibers, indicating superior wettability with the Elium<sup>®</sup> matrix, while carbon, aramid, and basalt fibers exhibit 58-62º, 73-74º, and 79-86º, respectively. Micro-bond tests demonstrate the highest load-carrying capacity in the interface between glass fibers and the matrix, with glass fibers carrying 11.4% more load than carbon fibers and 25.8% more than basalt fibers. Fiber bundle tests, including transverse and 45° fiber bundle tests, highlight the superior load-carrying performance of glass fibers, with all fiber types showing increased load-carrying capacities in the 45° tests. The micro-scale and meso-scale data obtained from micro-bond and fiber bundle tests corroborated the results of the macro-scale interlaminar shear stress (ILSS) tests, confirming the significant influence of the fiber–matrix interface on the mechanical integrity of the composites. The shear strength at the glass/Elium<sup>®</sup> interface was 47.54 MPa, which was 8.5% higher than carbon, 20.3% higher than aramid, and 25.9% higher than basalt interfaces. These findings advance our understanding of the mechanical behavior and interfacial adhesion in thermoplastic matrix composites. They underscore the crucial role of the fiber/matrix interface in determining the mechanical properties of composites and offer insights into the compatibility of diverse fiber reinforcements with the innovative Elium<sup>®</sup> matrix.</p></div>\",\"PeriodicalId\":557,\"journal\":{\"name\":\"Fibers and Polymers\",\"volume\":\"25 12\",\"pages\":\"4935 - 4950\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers and Polymers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12221-024-00781-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00781-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

摘要

Elium®液态热塑性树脂,具有室温固化和可回收性,可大规模生产。然而,对纤维-基体界面的研究有限,了解微观尺度的相互作用是影响复合材料宏观力学性能的关键。本研究在微观、中观和宏观尺度上研究了玻璃、碳、玄武岩和芳纶纤维增强液体Elium®热塑性基复合材料的界面粘附性。玻璃纤维的接触角测量显示为53-56º,表明与Elium®基体的润湿性较好,而碳、芳纶和玄武岩纤维的接触角分别为58-62º、73-74º和79-86º。微粘结试验表明,玻璃纤维与基体界面的承载能力最高,比碳纤维和玄武岩纤维的承载能力分别高出11.4%和25.8%。纤维束测试,包括横向和45°纤维束测试,突出了玻璃纤维优越的承载性能,所有类型的纤维在45°测试中都显示出更高的承载能力。微键和纤维束的细观和细观数据与宏观层间剪切应力(ILSS)测试结果一致,证实了纤维-基体界面对复合材料力学完整性的显著影响。玻璃/Elium®界面抗剪强度为47.54 MPa,比碳界面高8.5%,比芳纶界面高20.3%,比玄武岩界面高25.9%。这些发现促进了我们对热塑性基复合材料的力学行为和界面粘附的理解。它们强调了纤维/基体界面在确定复合材料机械性能方面的关键作用,并提供了不同纤维增强与创新Elium®基体的兼容性的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Scale Mechanical Behavior of Liquid Elium® Based Thermoplastic Matrix Composites Reinforced with Different Fiber Types: Insights from Fiber–Matrix Adhesion Interactions

Elium® liquid thermoplastic resin, with room-temperature curing and recyclability, enables large-scale production. However, limited research exists on the fiber–matrix interface, and understanding micro-scale interactions is key to influencing the composites macro-scale mechanical properties. This study investigates the interfacial adhesion of glass, carbon, basalt, and aramid fibers-reinforced liquid Elium® thermoplastic matrix composites at micro-, meso-, and macro-scales. Contact angle measurements show 53-56º for glass fibers, indicating superior wettability with the Elium® matrix, while carbon, aramid, and basalt fibers exhibit 58-62º, 73-74º, and 79-86º, respectively. Micro-bond tests demonstrate the highest load-carrying capacity in the interface between glass fibers and the matrix, with glass fibers carrying 11.4% more load than carbon fibers and 25.8% more than basalt fibers. Fiber bundle tests, including transverse and 45° fiber bundle tests, highlight the superior load-carrying performance of glass fibers, with all fiber types showing increased load-carrying capacities in the 45° tests. The micro-scale and meso-scale data obtained from micro-bond and fiber bundle tests corroborated the results of the macro-scale interlaminar shear stress (ILSS) tests, confirming the significant influence of the fiber–matrix interface on the mechanical integrity of the composites. The shear strength at the glass/Elium® interface was 47.54 MPa, which was 8.5% higher than carbon, 20.3% higher than aramid, and 25.9% higher than basalt interfaces. These findings advance our understanding of the mechanical behavior and interfacial adhesion in thermoplastic matrix composites. They underscore the crucial role of the fiber/matrix interface in determining the mechanical properties of composites and offer insights into the compatibility of diverse fiber reinforcements with the innovative Elium® matrix.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信