Jiandong Cao, Hailiang Liu, Qinjia Chen, Yongxiao Bai
{"title":"低温热还原石墨烯增强聚乙烯基碳纤维复合材料界面性能","authors":"Jiandong Cao, Hailiang Liu, Qinjia Chen, Yongxiao Bai","doi":"10.1007/s12221-024-00741-y","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon fiber reinforced polyolefin (CFRPO) composites have been widely applied in many engineering fields owing to their high specific strength and stiffness. However, carbon fiber (CF) with a chemically inert surface and low surface energy results in the weak interfacial interaction and mechanical properties of CFRPO composites. In this work, thermally reduced graphene was coated on CF with poly(diallyldimethylammonium chloride) (PDDA) as a modifier and coupling agent to improve the interfacial strength between CF and the matrix. After incorporated in linear low-density polyethylene (LLDPE) by melt compounding, the yield strength, yield modulus and thermal conductivity of modified CF reinforced polyethylene (LLDPE/CF-PLG) composite were increased by 18.18%, 16.48% and 5.27%, respectively, and the volume resistivity was decreased by 35.32% compared with LLDPE/CF at 30 wt.% content. The characterization results demonstrate that the enhancement of mechanical properties is attributed to the increased specific surface area, surface roughness and oxygen-containing functional groups on the surface of CF-PLG. This strategy provides a new approach for the enhancement of CF reinforced polymer composites.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 12","pages":"4823 - 4830"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Interfacial Properties of Polyethylene-Based Carbon Fiber Composites Through Low-Temperature Thermally Reduced Graphene\",\"authors\":\"Jiandong Cao, Hailiang Liu, Qinjia Chen, Yongxiao Bai\",\"doi\":\"10.1007/s12221-024-00741-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon fiber reinforced polyolefin (CFRPO) composites have been widely applied in many engineering fields owing to their high specific strength and stiffness. However, carbon fiber (CF) with a chemically inert surface and low surface energy results in the weak interfacial interaction and mechanical properties of CFRPO composites. In this work, thermally reduced graphene was coated on CF with poly(diallyldimethylammonium chloride) (PDDA) as a modifier and coupling agent to improve the interfacial strength between CF and the matrix. After incorporated in linear low-density polyethylene (LLDPE) by melt compounding, the yield strength, yield modulus and thermal conductivity of modified CF reinforced polyethylene (LLDPE/CF-PLG) composite were increased by 18.18%, 16.48% and 5.27%, respectively, and the volume resistivity was decreased by 35.32% compared with LLDPE/CF at 30 wt.% content. The characterization results demonstrate that the enhancement of mechanical properties is attributed to the increased specific surface area, surface roughness and oxygen-containing functional groups on the surface of CF-PLG. This strategy provides a new approach for the enhancement of CF reinforced polymer composites.</p></div>\",\"PeriodicalId\":557,\"journal\":{\"name\":\"Fibers and Polymers\",\"volume\":\"25 12\",\"pages\":\"4823 - 4830\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers and Polymers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12221-024-00741-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00741-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Enhancing the Interfacial Properties of Polyethylene-Based Carbon Fiber Composites Through Low-Temperature Thermally Reduced Graphene
Carbon fiber reinforced polyolefin (CFRPO) composites have been widely applied in many engineering fields owing to their high specific strength and stiffness. However, carbon fiber (CF) with a chemically inert surface and low surface energy results in the weak interfacial interaction and mechanical properties of CFRPO composites. In this work, thermally reduced graphene was coated on CF with poly(diallyldimethylammonium chloride) (PDDA) as a modifier and coupling agent to improve the interfacial strength between CF and the matrix. After incorporated in linear low-density polyethylene (LLDPE) by melt compounding, the yield strength, yield modulus and thermal conductivity of modified CF reinforced polyethylene (LLDPE/CF-PLG) composite were increased by 18.18%, 16.48% and 5.27%, respectively, and the volume resistivity was decreased by 35.32% compared with LLDPE/CF at 30 wt.% content. The characterization results demonstrate that the enhancement of mechanical properties is attributed to the increased specific surface area, surface roughness and oxygen-containing functional groups on the surface of CF-PLG. This strategy provides a new approach for the enhancement of CF reinforced polymer composites.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers