{"title":"一种自组装蛋白质- DNA复合物,内置DNA释放系统,用于定量免疫pcr应用","authors":"A. E. Sorenson and P. M. Schaeffer","doi":"10.1039/D4SD00225C","DOIUrl":null,"url":null,"abstract":"<p >Site-specific protein : DNA conjugation is gaining increasing importance in detection technologies such as quantitative immuno-PCR (qIPCR). Until now, DNA-binding proteins have been a relatively untapped source of protein : DNA conjugation systems. In <em>Escherichia coli</em>, the biotin protein ligase (BirA) is a biotin-dependent DNA-binding protein that offers a means to connect a protein of interest (POI) with DNA. Here, we explored BirA as a unique on–off protein : DNA connection switch for the production of self-assembling POI : DNA conjugates. Green fluorescent protein (GFP) is a versatile protein tag and reporter, commonly quantified by fluorescence detection. However, low GFP concentrations are challenging to detect and require more sensitive methods. A multitude of high-affinity antibodies are available for capture and detection of GFP as an affinity tag. As such, a well-characterised GFP-tagged BirA (BirA-GFP) was selected for the development and validation of an innovative qIPCR platform technology. The unique principle of this assay involves the assembly of two BirA-GFP with the <em>bioO</em> repressor DNA sequence in the presence of ATP and biotin. The resulting high affinity <em>bioO</em> : BirA-GFP complex can be applied in various formats to detect the presence of anti-GFP IgG as well as GFP immobilised on a surface. Complete release of the quantifiable <em>bioO</em> DNA can easily be achieved by omitting ATP and biotin in the final elution step. The new BirA-based qIPCR assay enabled picomolar (≥10<small><sup>−12</sup></small> M) detection of GFP and anti-GFP IgG as well as their affinity profiling.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 12","pages":" 1976-1983"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00225c?page=search","citationCount":"0","resultStr":"{\"title\":\"A self-assembling protein–DNA complex with an inbuilt DNA release system for quantitative immuno-PCR applications†\",\"authors\":\"A. E. Sorenson and P. M. Schaeffer\",\"doi\":\"10.1039/D4SD00225C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Site-specific protein : DNA conjugation is gaining increasing importance in detection technologies such as quantitative immuno-PCR (qIPCR). Until now, DNA-binding proteins have been a relatively untapped source of protein : DNA conjugation systems. In <em>Escherichia coli</em>, the biotin protein ligase (BirA) is a biotin-dependent DNA-binding protein that offers a means to connect a protein of interest (POI) with DNA. Here, we explored BirA as a unique on–off protein : DNA connection switch for the production of self-assembling POI : DNA conjugates. Green fluorescent protein (GFP) is a versatile protein tag and reporter, commonly quantified by fluorescence detection. However, low GFP concentrations are challenging to detect and require more sensitive methods. A multitude of high-affinity antibodies are available for capture and detection of GFP as an affinity tag. As such, a well-characterised GFP-tagged BirA (BirA-GFP) was selected for the development and validation of an innovative qIPCR platform technology. The unique principle of this assay involves the assembly of two BirA-GFP with the <em>bioO</em> repressor DNA sequence in the presence of ATP and biotin. The resulting high affinity <em>bioO</em> : BirA-GFP complex can be applied in various formats to detect the presence of anti-GFP IgG as well as GFP immobilised on a surface. Complete release of the quantifiable <em>bioO</em> DNA can easily be achieved by omitting ATP and biotin in the final elution step. The new BirA-based qIPCR assay enabled picomolar (≥10<small><sup>−12</sup></small> M) detection of GFP and anti-GFP IgG as well as their affinity profiling.</p>\",\"PeriodicalId\":74786,\"journal\":{\"name\":\"Sensors & diagnostics\",\"volume\":\" 12\",\"pages\":\" 1976-1983\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00225c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors & diagnostics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/sd/d4sd00225c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors & diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sd/d4sd00225c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A self-assembling protein–DNA complex with an inbuilt DNA release system for quantitative immuno-PCR applications†
Site-specific protein : DNA conjugation is gaining increasing importance in detection technologies such as quantitative immuno-PCR (qIPCR). Until now, DNA-binding proteins have been a relatively untapped source of protein : DNA conjugation systems. In Escherichia coli, the biotin protein ligase (BirA) is a biotin-dependent DNA-binding protein that offers a means to connect a protein of interest (POI) with DNA. Here, we explored BirA as a unique on–off protein : DNA connection switch for the production of self-assembling POI : DNA conjugates. Green fluorescent protein (GFP) is a versatile protein tag and reporter, commonly quantified by fluorescence detection. However, low GFP concentrations are challenging to detect and require more sensitive methods. A multitude of high-affinity antibodies are available for capture and detection of GFP as an affinity tag. As such, a well-characterised GFP-tagged BirA (BirA-GFP) was selected for the development and validation of an innovative qIPCR platform technology. The unique principle of this assay involves the assembly of two BirA-GFP with the bioO repressor DNA sequence in the presence of ATP and biotin. The resulting high affinity bioO : BirA-GFP complex can be applied in various formats to detect the presence of anti-GFP IgG as well as GFP immobilised on a surface. Complete release of the quantifiable bioO DNA can easily be achieved by omitting ATP and biotin in the final elution step. The new BirA-based qIPCR assay enabled picomolar (≥10−12 M) detection of GFP and anti-GFP IgG as well as their affinity profiling.