低惯量电力系统大扰动下并网逆变器的弹性运行

IF 5.2 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Muhammad F. Umar;Amirhosein Gohari Nazari;Mohammad B. Shadmand;Haitham Abu-Rub
{"title":"低惯量电力系统大扰动下并网逆变器的弹性运行","authors":"Muhammad F. Umar;Amirhosein Gohari Nazari;Mohammad B. Shadmand;Haitham Abu-Rub","doi":"10.1109/OJIES.2024.3501078","DOIUrl":null,"url":null,"abstract":"The future power grid is transitioning toward a low inertia power system due to the displacement of synchronous generators (SG)-based generation sources and incorporating inverters-based renewable energy resources. Heterogeneous grid-forming inverters (GFMIs) are expected to be dominant sources in the power generation mix due to several benefits that are inherited in this inverter control. However, these GFMIs impose different transients on the power grid that did not exist in the conventional power grid. The effect of this heterogeneity on the dynamic behavior of such power grid with a fleet of GFMIs becomes more significant under large-scale disturbances such as short circuit faults. Particularly, because of the noncoherent and heterogeneous dynamic behavior of GFMIs in the presence of the conventional overcurrent protection schemes posing several challenges to the resiliency of a power grid during a fault and in a postfault state. To improve the resiliency of the power grid with heterogeneous GFMIs during these conditions, a coherency enforcement scheme among heterogeneous GFMI is proposed. This ensures a coherent transition of GFMIs from the normal to fault-ride-through mode and from the fault-ride-through mode to normal condition when the fault is cleared. Moreover, the proposed improvements in GFMI control prevent the excessive change/acceleration in the voltage angle of GFMIs that prevents the loss of synchronism, improves the dynamic behavior of GFMIs, and ensure seamless operation under large-scale disturbances, resulting in enhancing resiliency of power grid. These claims in the resiliency enhancements for a power grid dominated with heterogeneous GFMIs under large-scale disturbances are validated via hardware-in-the-loop experimental case studies.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"1286-1299"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10755083","citationCount":"0","resultStr":"{\"title\":\"Resilient Operation of Grid-Forming Inverters Under Large-Scale Disturbances in Low Inertia Power System\",\"authors\":\"Muhammad F. Umar;Amirhosein Gohari Nazari;Mohammad B. Shadmand;Haitham Abu-Rub\",\"doi\":\"10.1109/OJIES.2024.3501078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The future power grid is transitioning toward a low inertia power system due to the displacement of synchronous generators (SG)-based generation sources and incorporating inverters-based renewable energy resources. Heterogeneous grid-forming inverters (GFMIs) are expected to be dominant sources in the power generation mix due to several benefits that are inherited in this inverter control. However, these GFMIs impose different transients on the power grid that did not exist in the conventional power grid. The effect of this heterogeneity on the dynamic behavior of such power grid with a fleet of GFMIs becomes more significant under large-scale disturbances such as short circuit faults. Particularly, because of the noncoherent and heterogeneous dynamic behavior of GFMIs in the presence of the conventional overcurrent protection schemes posing several challenges to the resiliency of a power grid during a fault and in a postfault state. To improve the resiliency of the power grid with heterogeneous GFMIs during these conditions, a coherency enforcement scheme among heterogeneous GFMI is proposed. This ensures a coherent transition of GFMIs from the normal to fault-ride-through mode and from the fault-ride-through mode to normal condition when the fault is cleared. Moreover, the proposed improvements in GFMI control prevent the excessive change/acceleration in the voltage angle of GFMIs that prevents the loss of synchronism, improves the dynamic behavior of GFMIs, and ensure seamless operation under large-scale disturbances, resulting in enhancing resiliency of power grid. These claims in the resiliency enhancements for a power grid dominated with heterogeneous GFMIs under large-scale disturbances are validated via hardware-in-the-loop experimental case studies.\",\"PeriodicalId\":52675,\"journal\":{\"name\":\"IEEE Open Journal of the Industrial Electronics Society\",\"volume\":\"5 \",\"pages\":\"1286-1299\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10755083\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10755083/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10755083/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于同步发电机(SG)发电源的替代和基于逆变器的可再生能源的整合,未来的电网正在向低惯性电力系统过渡。由于在这种逆变器控制中继承了几个优点,异质并网逆变器(gfmi)有望成为发电组合中的主要来源。然而,这些gfmi对电网施加了传统电网中不存在的不同暂态。在短路故障等大规模扰动下,这种非均质性对具有gfmi的电网动态行为的影响更为显著。特别是,由于gfmi在传统过流保护方案下的非相干和异构动态行为,对电网在故障期间和故障后状态下的弹性提出了若干挑战。为了提高异构GFMI在这些条件下的电网弹性,提出了一种异构GFMI之间的一致性增强方案。这确保了gfmi在故障清除时从正常到故障通断模式以及从故障通断模式到正常状态的连贯过渡。此外,本文提出的GFMI控制改进措施防止了GFMI电压角的过度变化/加速,防止了GFMI的同步丢失,改善了GFMI的动态行为,保证了GFMI在大范围干扰下的无缝运行,从而增强了电网的弹性。这些在大规模干扰下由异质gfmi主导的电网弹性增强方面的主张通过硬件在环实验案例研究得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resilient Operation of Grid-Forming Inverters Under Large-Scale Disturbances in Low Inertia Power System
The future power grid is transitioning toward a low inertia power system due to the displacement of synchronous generators (SG)-based generation sources and incorporating inverters-based renewable energy resources. Heterogeneous grid-forming inverters (GFMIs) are expected to be dominant sources in the power generation mix due to several benefits that are inherited in this inverter control. However, these GFMIs impose different transients on the power grid that did not exist in the conventional power grid. The effect of this heterogeneity on the dynamic behavior of such power grid with a fleet of GFMIs becomes more significant under large-scale disturbances such as short circuit faults. Particularly, because of the noncoherent and heterogeneous dynamic behavior of GFMIs in the presence of the conventional overcurrent protection schemes posing several challenges to the resiliency of a power grid during a fault and in a postfault state. To improve the resiliency of the power grid with heterogeneous GFMIs during these conditions, a coherency enforcement scheme among heterogeneous GFMI is proposed. This ensures a coherent transition of GFMIs from the normal to fault-ride-through mode and from the fault-ride-through mode to normal condition when the fault is cleared. Moreover, the proposed improvements in GFMI control prevent the excessive change/acceleration in the voltage angle of GFMIs that prevents the loss of synchronism, improves the dynamic behavior of GFMIs, and ensure seamless operation under large-scale disturbances, resulting in enhancing resiliency of power grid. These claims in the resiliency enhancements for a power grid dominated with heterogeneous GFMIs under large-scale disturbances are validated via hardware-in-the-loop experimental case studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Open Journal of the Industrial Electronics Society
IEEE Open Journal of the Industrial Electronics Society ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
10.80
自引率
2.40%
发文量
33
审稿时长
12 weeks
期刊介绍: The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments. Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信