下载PDF
{"title":"对“光子尖峰神经元激子-极化子凝聚体的漏-积-燃机制”的修正","authors":"","doi":"10.1002/lpor.202401760","DOIUrl":null,"url":null,"abstract":"<p>K. Tyszka, M. Furman, R. Mirek, M. Król, A. Opala, B. Seredyński, J. Suffczyński, W. Pacuski, M. Matuszewski, J. Szczytko, B. Piętka, Leaky Integrate-and-Fire Mechanism in Exciton–Polariton Condensates for Photonic Spiking Neurons. Laser Photonics Rev 2022, 17, 2100660. https://doi.org/10.1002/lpor.202100660</p><p>In this article, an error was identified in the caption and panel numbering of Figure 5. Panels (d) and (e) were inadvertently switched, and two of the panel references were omitted from the caption.</p><p>The revised version of Figure 5, along with its caption, is provided below.</p><p></p><p><b>Figure 5</b> (a) Dependence of the delay <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>t</mi>\n </mrow>\n <annotation>$\\Delta {\\mathrm{t}}$</annotation>\n </semantics></math> between the peak of the pumping pulse P(t) and the peak of the condensate emission <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>n</mi>\n <mi>C</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${{{\\mathrm{n}}}_{\\mathrm{C}}}( {\\mathrm{t}} )$</annotation>\n </semantics></math> on the peak pumping power P. (b, c) Evolution of condensate density <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>n</mi>\n <mi>C</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${{{\\mathrm{n}}}_{\\mathrm{C}}}( {\\mathrm{t}} )$</annotation>\n </semantics></math> and the inactive reservoir density <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>n</mi>\n <mi>i</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${{{\\mathrm{n}}}_{\\mathrm{i}}}( {\\mathrm{t}} )$</annotation>\n </semantics></math> for the two pumping powers marked in (a). (d, e) The corresponding evolution of the active reservoir density <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>n</mi>\n <mi>R</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${{{\\mathrm{n}}}_{\\mathrm{R}}}( {\\mathrm{t}} )$</annotation>\n </semantics></math>. Parameters: <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n <mi>C</mi>\n </msub>\n <mo>=</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>12</mn>\n </mrow>\n <annotation>${{{{\\gamma}}}_{\\mathrm{C}}} = 1/12$</annotation>\n </semantics></math> (1/ps), <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n <mi>R</mi>\n </msub>\n <mo>=</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>200</mn>\n </mrow>\n <annotation>${{{{\\gamma}}}_{\\mathrm{R}}} = 1/200$</annotation>\n </semantics></math> (1/ps), <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n <mi>I</mi>\n </msub>\n <mo>=</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>1000</mn>\n </mrow>\n <annotation>${{{{\\gamma}}}_{\\mathrm{I}}} = 1/1000$</annotation>\n </semantics></math> (1/ps), <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>=</mo>\n <mn>6</mn>\n <mo>×</mo>\n <msup>\n <mn>10</mn>\n <mrow>\n <mo>−</mo>\n <mn>4</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>${\\mathrm{R}} = 6 \\times {{10}^{ - 4}}$</annotation>\n </semantics></math>(<span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <msup>\n <mi>m</mi>\n <mrow>\n <mn>2</mn>\n <mspace></mspace>\n </mrow>\n </msup>\n </mrow>\n <annotation>${{\\umu}}{{{\\mathrm{m}}}^{2\\ }}$</annotation>\n </semantics></math>/ps), <span></span><math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mo>=</mo>\n <mn>5</mn>\n <mo>×</mo>\n <msup>\n <mn>10</mn>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>${{\\kappa}} = 5 \\times {{10}^{ - 2}}$</annotation>\n </semantics></math>(<span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <msup>\n <mi>m</mi>\n <mrow>\n <mn>2</mn>\n <mspace></mspace>\n </mrow>\n </msup>\n </mrow>\n <annotation>${{\\umu}}{{{\\mathrm{m}}}^{2\\ }}$</annotation>\n </semantics></math>/ps), <span></span><math>\n <semantics>\n <msub>\n <mi>P</mi>\n <mn>0</mn>\n </msub>\n <annotation>${{{\\mathrm{P}}}_0}$</annotation>\n </semantics></math> is the scaling parameter equal to 445 <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n <mrow>\n <mi>C</mi>\n <mspace></mspace>\n </mrow>\n </msub>\n <msub>\n <mi>γ</mi>\n <mrow>\n <mi>R</mi>\n <mspace></mspace>\n </mrow>\n </msub>\n <mo>/</mo>\n <mi>R</mi>\n </mrow>\n <annotation>${{{{\\gamma}}}_{{\\mathrm{C\\ }}}}{{{{\\gamma}}}_{{\\mathrm{R\\ }}}}/{\\mathrm{R}}$</annotation>\n </semantics></math>.</p>","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"19 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lpor.202401760","citationCount":"0","resultStr":"{\"title\":\"Correction to “Leaky-Integrate-and-Fire Mechanism in Exciton-Polariton Condensates for Photonic Spiking Neurons”\",\"authors\":\"\",\"doi\":\"10.1002/lpor.202401760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>K. Tyszka, M. Furman, R. Mirek, M. Król, A. Opala, B. Seredyński, J. Suffczyński, W. Pacuski, M. Matuszewski, J. Szczytko, B. Piętka, Leaky Integrate-and-Fire Mechanism in Exciton–Polariton Condensates for Photonic Spiking Neurons. Laser Photonics Rev 2022, 17, 2100660. https://doi.org/10.1002/lpor.202100660</p><p>In this article, an error was identified in the caption and panel numbering of Figure 5. Panels (d) and (e) were inadvertently switched, and two of the panel references were omitted from the caption.</p><p>The revised version of Figure 5, along with its caption, is provided below.</p><p></p><p><b>Figure 5</b> (a) Dependence of the delay <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mi>t</mi>\\n </mrow>\\n <annotation>$\\\\Delta {\\\\mathrm{t}}$</annotation>\\n </semantics></math> between the peak of the pumping pulse P(t) and the peak of the condensate emission <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>n</mi>\\n <mi>C</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${{{\\\\mathrm{n}}}_{\\\\mathrm{C}}}( {\\\\mathrm{t}} )$</annotation>\\n </semantics></math> on the peak pumping power P. (b, c) Evolution of condensate density <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>n</mi>\\n <mi>C</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${{{\\\\mathrm{n}}}_{\\\\mathrm{C}}}( {\\\\mathrm{t}} )$</annotation>\\n </semantics></math> and the inactive reservoir density <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>n</mi>\\n <mi>i</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${{{\\\\mathrm{n}}}_{\\\\mathrm{i}}}( {\\\\mathrm{t}} )$</annotation>\\n </semantics></math> for the two pumping powers marked in (a). (d, e) The corresponding evolution of the active reservoir density <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>n</mi>\\n <mi>R</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${{{\\\\mathrm{n}}}_{\\\\mathrm{R}}}( {\\\\mathrm{t}} )$</annotation>\\n </semantics></math>. Parameters: <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>γ</mi>\\n <mi>C</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>12</mn>\\n </mrow>\\n <annotation>${{{{\\\\gamma}}}_{\\\\mathrm{C}}} = 1/12$</annotation>\\n </semantics></math> (1/ps), <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>γ</mi>\\n <mi>R</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>200</mn>\\n </mrow>\\n <annotation>${{{{\\\\gamma}}}_{\\\\mathrm{R}}} = 1/200$</annotation>\\n </semantics></math> (1/ps), <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>γ</mi>\\n <mi>I</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>1000</mn>\\n </mrow>\\n <annotation>${{{{\\\\gamma}}}_{\\\\mathrm{I}}} = 1/1000$</annotation>\\n </semantics></math> (1/ps), <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mo>=</mo>\\n <mn>6</mn>\\n <mo>×</mo>\\n <msup>\\n <mn>10</mn>\\n <mrow>\\n <mo>−</mo>\\n <mn>4</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>${\\\\mathrm{R}} = 6 \\\\times {{10}^{ - 4}}$</annotation>\\n </semantics></math>(<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mn>2</mn>\\n <mspace></mspace>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>${{\\\\umu}}{{{\\\\mathrm{m}}}^{2\\\\ }}$</annotation>\\n </semantics></math>/ps), <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>κ</mi>\\n <mo>=</mo>\\n <mn>5</mn>\\n <mo>×</mo>\\n <msup>\\n <mn>10</mn>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>${{\\\\kappa}} = 5 \\\\times {{10}^{ - 2}}$</annotation>\\n </semantics></math>(<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mn>2</mn>\\n <mspace></mspace>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>${{\\\\umu}}{{{\\\\mathrm{m}}}^{2\\\\ }}$</annotation>\\n </semantics></math>/ps), <span></span><math>\\n <semantics>\\n <msub>\\n <mi>P</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>${{{\\\\mathrm{P}}}_0}$</annotation>\\n </semantics></math> is the scaling parameter equal to 445 <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>γ</mi>\\n <mrow>\\n <mi>C</mi>\\n <mspace></mspace>\\n </mrow>\\n </msub>\\n <msub>\\n <mi>γ</mi>\\n <mrow>\\n <mi>R</mi>\\n <mspace></mspace>\\n </mrow>\\n </msub>\\n <mo>/</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>${{{{\\\\gamma}}}_{{\\\\mathrm{C\\\\ }}}}{{{{\\\\gamma}}}_{{\\\\mathrm{R\\\\ }}}}/{\\\\mathrm{R}}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lpor.202401760\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202401760\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202401760","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Correction to “Leaky-Integrate-and-Fire Mechanism in Exciton-Polariton Condensates for Photonic Spiking Neurons”
K. Tyszka, M. Furman, R. Mirek, M. Król, A. Opala, B. Seredyński, J. Suffczyński, W. Pacuski, M. Matuszewski, J. Szczytko, B. Piętka, Leaky Integrate-and-Fire Mechanism in Exciton–Polariton Condensates for Photonic Spiking Neurons. Laser Photonics Rev 2022, 17, 2100660. https://doi.org/10.1002/lpor.202100660
In this article, an error was identified in the caption and panel numbering of Figure 5. Panels (d) and (e) were inadvertently switched, and two of the panel references were omitted from the caption.
The revised version of Figure 5, along with its caption, is provided below.
Figure 5 (a) Dependence of the delay
Δ
t
$\Delta {\mathrm{t}}$
between the peak of the pumping pulse P(t) and the peak of the condensate emission
n
C
(
t
)
${{{\mathrm{n}}}_{\mathrm{C}}}( {\mathrm{t}} )$
on the peak pumping power P. (b, c) Evolution of condensate density
n
C
(
t
)
${{{\mathrm{n}}}_{\mathrm{C}}}( {\mathrm{t}} )$
and the inactive reservoir density
n
i
(
t
)
${{{\mathrm{n}}}_{\mathrm{i}}}( {\mathrm{t}} )$
for the two pumping powers marked in (a). (d, e) The corresponding evolution of the active reservoir density
n
R
(
t
)
${{{\mathrm{n}}}_{\mathrm{R}}}( {\mathrm{t}} )$
. Parameters:
γ
C
=
1
/
12
${{{{\gamma}}}_{\mathrm{C}}} = 1/12$
(1/ps),
γ
R
=
1
/
200
${{{{\gamma}}}_{\mathrm{R}}} = 1/200$
(1/ps),
γ
I
=
1
/
1000
${{{{\gamma}}}_{\mathrm{I}}} = 1/1000$
(1/ps),
R
=
6
×
10
−
4
${\mathrm{R}} = 6 \times {{10}^{ - 4}}$
(
μ
m
2
${{\umu}}{{{\mathrm{m}}}^{2\ }}$
/ps),
κ
=
5
×
10
−
2
${{\kappa}} = 5 \times {{10}^{ - 2}}$
(
μ
m
2
${{\umu}}{{{\mathrm{m}}}^{2\ }}$
/ps),
P
0
${{{\mathrm{P}}}_0}$
is the scaling parameter equal to 445
γ
C
γ
R
/
R
${{{{\gamma}}}_{{\mathrm{C\ }}}}{{{{\gamma}}}_{{\mathrm{R\ }}}}/{\mathrm{R}}$
.