热激自旋失序加速了水电解

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fakang Xie, Yu Du, Mengfei Lu, Shicheng Yan and Zhigang Zou
{"title":"热激自旋失序加速了水电解","authors":"Fakang Xie, Yu Du, Mengfei Lu, Shicheng Yan and Zhigang Zou","doi":"10.1039/D4EE04597A","DOIUrl":null,"url":null,"abstract":"<p >The sluggish kinetics of the oxygen evolution reaction (OER) greatly limits the efficiency of water splitting. High OER overpotentials would originate from high electron transfer barriers in electrolyte/catalytic layer/catalyst core interfaces during water oxidation reactions. Herein, we assembled a temperature-dependent magnetic YFe<small><sub>1−<em>x</em></sub></small>Mn<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small> core and paramagnetic YFeOOH shell to form a YFe<small><sub>1−<em>x</em></sub></small>Mn<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small>@YFeOOH core–shell structured catalyst to explore the effects of the thermal-stimulated magnetic state of catalytic materials on OER kinetics. We found that the thermal-stimulated paramagnetic state of the YFe<small><sub>1−<em>x</em></sub></small>Mn<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small> core contributes to accelerated electron transfer at the YFe<small><sub>1−<em>x</em></sub></small>Mn<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small>@YFeOOH core-catalytic layer interface. Meanwhile, it improves the intrinsic OER activities of the YFeOOH catalytic layer. The thermal-stimulated magnetic transition of YFe<small><sub>1−<em>x</em></sub></small>Mn<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small> (from antiferromagnetic to paramagnetic) increases the magnetic disorder at the YFe<small><sub>1−<em>x</em></sub></small>Mn<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small>@YFeOOH interface to reduce spin-flipping barriers and induces the production of highly OER-active electronic states for the YFeOOH catalytic layer owing to the strong interactions between the YFe<small><sub>1−<em>x</em></sub></small>Mn<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small> core and YFeOOH catalytic layer, thus breaking the linear Arrhenius relationship. Our findings provide a new low-barrier OER route <em>via</em> thermal-stimulated magnetic disordering.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 4","pages":" 1972-1983"},"PeriodicalIF":32.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal-stimulated spin disordering accelerates water electrolysis†\",\"authors\":\"Fakang Xie, Yu Du, Mengfei Lu, Shicheng Yan and Zhigang Zou\",\"doi\":\"10.1039/D4EE04597A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The sluggish kinetics of the oxygen evolution reaction (OER) greatly limits the efficiency of water splitting. High OER overpotentials would originate from high electron transfer barriers in electrolyte/catalytic layer/catalyst core interfaces during water oxidation reactions. Herein, we assembled a temperature-dependent magnetic YFe<small><sub>1−<em>x</em></sub></small>Mn<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small> core and paramagnetic YFeOOH shell to form a YFe<small><sub>1−<em>x</em></sub></small>Mn<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small>@YFeOOH core–shell structured catalyst to explore the effects of the thermal-stimulated magnetic state of catalytic materials on OER kinetics. We found that the thermal-stimulated paramagnetic state of the YFe<small><sub>1−<em>x</em></sub></small>Mn<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small> core contributes to accelerated electron transfer at the YFe<small><sub>1−<em>x</em></sub></small>Mn<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small>@YFeOOH core-catalytic layer interface. Meanwhile, it improves the intrinsic OER activities of the YFeOOH catalytic layer. The thermal-stimulated magnetic transition of YFe<small><sub>1−<em>x</em></sub></small>Mn<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small> (from antiferromagnetic to paramagnetic) increases the magnetic disorder at the YFe<small><sub>1−<em>x</em></sub></small>Mn<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small>@YFeOOH interface to reduce spin-flipping barriers and induces the production of highly OER-active electronic states for the YFeOOH catalytic layer owing to the strong interactions between the YFe<small><sub>1−<em>x</em></sub></small>Mn<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small> core and YFeOOH catalytic layer, thus breaking the linear Arrhenius relationship. Our findings provide a new low-barrier OER route <em>via</em> thermal-stimulated magnetic disordering.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 4\",\"pages\":\" 1972-1983\"},\"PeriodicalIF\":32.4000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d4ee04597a\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d4ee04597a","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

析氧反应(OER)的缓慢动力学极大地限制了水裂解的效率。水氧化反应过程中电解质/催化层/催化剂芯界面的高电子转移势垒是导致高OER过电位的主要原因。本研究将温度依赖的磁性YFe1-xMnxO3核与顺磁性YFeOOH壳组装成YFe1-xMnxO3@YFeOOH核-壳结构催化剂,探讨热激磁状态对OER动力学的影响。我们发现YFe1-xMnxO3核的热激顺磁态有助于加速YFe1-xMnxO3@YFeOOH核-催化层界面上的电子转移。同时提高了YFeOOH催化层的OER活性。YFe1-xMnxO3的热激磁跃迁(从反铁磁性到顺磁性)扩大了YFe1-xMnxO3@YFeOOH界面处的磁无序性,降低了自旋翻转势垒,并由于YFe1-xMnxO3核与YFeOOH催化层之间的强相互作用,导致YFeOOH催化层产生高oer活性的电子态,从而打破了线性Arrhenius关系。我们的发现提供了一种新的低势垒OER热刺激磁紊乱途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermal-stimulated spin disordering accelerates water electrolysis†

Thermal-stimulated spin disordering accelerates water electrolysis†

The sluggish kinetics of the oxygen evolution reaction (OER) greatly limits the efficiency of water splitting. High OER overpotentials would originate from high electron transfer barriers in electrolyte/catalytic layer/catalyst core interfaces during water oxidation reactions. Herein, we assembled a temperature-dependent magnetic YFe1−xMnxO3 core and paramagnetic YFeOOH shell to form a YFe1−xMnxO3@YFeOOH core–shell structured catalyst to explore the effects of the thermal-stimulated magnetic state of catalytic materials on OER kinetics. We found that the thermal-stimulated paramagnetic state of the YFe1−xMnxO3 core contributes to accelerated electron transfer at the YFe1−xMnxO3@YFeOOH core-catalytic layer interface. Meanwhile, it improves the intrinsic OER activities of the YFeOOH catalytic layer. The thermal-stimulated magnetic transition of YFe1−xMnxO3 (from antiferromagnetic to paramagnetic) increases the magnetic disorder at the YFe1−xMnxO3@YFeOOH interface to reduce spin-flipping barriers and induces the production of highly OER-active electronic states for the YFeOOH catalytic layer owing to the strong interactions between the YFe1−xMnxO3 core and YFeOOH catalytic layer, thus breaking the linear Arrhenius relationship. Our findings provide a new low-barrier OER route via thermal-stimulated magnetic disordering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信