{"title":"优化钙钛矿表面以增强高效蓝色混合卤化物钙钛矿发光二极管的后处理","authors":"Aqiang Liu, Zheng Zhang, Jing Li, Hui Yu, Nana Wang, Jianpu Wang, Ni Zhao","doi":"10.1002/adma.202414788","DOIUrl":null,"url":null,"abstract":"<p>The halide postdeposition treatment technique is a widely used strategy for mitigating defects in perovskite. However, when applied to mixed-halide perovskites, it often leads to surface and internal halide heterogeneity, which compromises luminescence performance and spectral stability. In this work, blue mixed-halide 3D perovskites are engineered with acetate (Ac⁻)-rich surfaces to optimize the post-treatment process and achieve halide homogeneity. The findings demonstrate that the strong interaction between surface Ac⁻ ions and Pb<sup>2+</sup> ions significantly reduces the formation of halide vacancy defects caused by the washing effect of isopropanol during post-treatment. This defect reduction slows the infiltration of halide ions into the perovskite lattice, providing more time for surface reconstruction and minimizing the accumulation of introduced halide ions at the surface. As a result, a mild halide redistribution occurs, promoting the formation of a uniform mixed-halide perovskite phase. This approach enabled the development of blue mixed-halide 3D PeLEDs with a record external quantum efficiency of 19.28% (emission peak at 482 nm), comparable to state-of-the-art blue reduced-dimensional perovskite-based PeLEDs. Additionally, the device demonstrated a narrowband and stable electroluminescence spectrum with a full width at half maximum (FWHM) of less than 16 nm.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 25","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202414788","citationCount":"0","resultStr":"{\"title\":\"Optimizing Perovskite Surfaces to Enhance Post-Treatment for Efficient Blue Mixed-Halide Perovskite Light-emitting Diodes\",\"authors\":\"Aqiang Liu, Zheng Zhang, Jing Li, Hui Yu, Nana Wang, Jianpu Wang, Ni Zhao\",\"doi\":\"10.1002/adma.202414788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The halide postdeposition treatment technique is a widely used strategy for mitigating defects in perovskite. However, when applied to mixed-halide perovskites, it often leads to surface and internal halide heterogeneity, which compromises luminescence performance and spectral stability. In this work, blue mixed-halide 3D perovskites are engineered with acetate (Ac⁻)-rich surfaces to optimize the post-treatment process and achieve halide homogeneity. The findings demonstrate that the strong interaction between surface Ac⁻ ions and Pb<sup>2+</sup> ions significantly reduces the formation of halide vacancy defects caused by the washing effect of isopropanol during post-treatment. This defect reduction slows the infiltration of halide ions into the perovskite lattice, providing more time for surface reconstruction and minimizing the accumulation of introduced halide ions at the surface. As a result, a mild halide redistribution occurs, promoting the formation of a uniform mixed-halide perovskite phase. This approach enabled the development of blue mixed-halide 3D PeLEDs with a record external quantum efficiency of 19.28% (emission peak at 482 nm), comparable to state-of-the-art blue reduced-dimensional perovskite-based PeLEDs. Additionally, the device demonstrated a narrowband and stable electroluminescence spectrum with a full width at half maximum (FWHM) of less than 16 nm.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 25\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202414788\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202414788\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202414788","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimizing Perovskite Surfaces to Enhance Post-Treatment for Efficient Blue Mixed-Halide Perovskite Light-emitting Diodes
The halide postdeposition treatment technique is a widely used strategy for mitigating defects in perovskite. However, when applied to mixed-halide perovskites, it often leads to surface and internal halide heterogeneity, which compromises luminescence performance and spectral stability. In this work, blue mixed-halide 3D perovskites are engineered with acetate (Ac⁻)-rich surfaces to optimize the post-treatment process and achieve halide homogeneity. The findings demonstrate that the strong interaction between surface Ac⁻ ions and Pb2+ ions significantly reduces the formation of halide vacancy defects caused by the washing effect of isopropanol during post-treatment. This defect reduction slows the infiltration of halide ions into the perovskite lattice, providing more time for surface reconstruction and minimizing the accumulation of introduced halide ions at the surface. As a result, a mild halide redistribution occurs, promoting the formation of a uniform mixed-halide perovskite phase. This approach enabled the development of blue mixed-halide 3D PeLEDs with a record external quantum efficiency of 19.28% (emission peak at 482 nm), comparable to state-of-the-art blue reduced-dimensional perovskite-based PeLEDs. Additionally, the device demonstrated a narrowband and stable electroluminescence spectrum with a full width at half maximum (FWHM) of less than 16 nm.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.