高性能智能传感器的超材料

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Renquan Guan, Hao Xu, Zheng Lou, Zhao Zhao, Lili Wang
{"title":"高性能智能传感器的超材料","authors":"Renquan Guan, Hao Xu, Zheng Lou, Zhao Zhao, Lili Wang","doi":"10.1063/5.0232606","DOIUrl":null,"url":null,"abstract":"In recent years, metamaterials have shown great potential in various fields such as optics, acoustics, and electromagnetics. Sensors based on metamaterials have been gradually applied in daily production, life, and military. Metamaterials are artificial materials with unique properties that ordinary materials do not possess. Through clever microstructure design, they can achieve different properties and have demonstrated significant potential in areas like holographic projection, absorbing materials, and super-resolution microscopy. Sensors are devices that convert external environmental changes into recognizable signals, playing a crucial role in various fields such as healthcare, industry, and military. Therefore, the development of sensors with high sensitivity, low detection limit, wide detection range, and easy integration is of great significance. Sensors based on metamaterials can not only achieve these improvements but also offer advantages like anti-interference and stealth sensing, which traditional sensors lack. These enhancements and new features are significant for the sensor field's development. This article summarizes the benefits of metamaterial sensors in terms of increased sensitivity, expanded detection range, and ease of system integration. It also systematically discusses their applications in various fields such as biomedical and gas sensing. The focus is on the potential applications and development trends of metamaterial-based sensors in the future of human life, providing systematic guidance for the field's advancement.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"79 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metamaterials for high-performance smart sensors\",\"authors\":\"Renquan Guan, Hao Xu, Zheng Lou, Zhao Zhao, Lili Wang\",\"doi\":\"10.1063/5.0232606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, metamaterials have shown great potential in various fields such as optics, acoustics, and electromagnetics. Sensors based on metamaterials have been gradually applied in daily production, life, and military. Metamaterials are artificial materials with unique properties that ordinary materials do not possess. Through clever microstructure design, they can achieve different properties and have demonstrated significant potential in areas like holographic projection, absorbing materials, and super-resolution microscopy. Sensors are devices that convert external environmental changes into recognizable signals, playing a crucial role in various fields such as healthcare, industry, and military. Therefore, the development of sensors with high sensitivity, low detection limit, wide detection range, and easy integration is of great significance. Sensors based on metamaterials can not only achieve these improvements but also offer advantages like anti-interference and stealth sensing, which traditional sensors lack. These enhancements and new features are significant for the sensor field's development. This article summarizes the benefits of metamaterial sensors in terms of increased sensitivity, expanded detection range, and ease of system integration. It also systematically discusses their applications in various fields such as biomedical and gas sensing. The focus is on the potential applications and development trends of metamaterial-based sensors in the future of human life, providing systematic guidance for the field's advancement.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0232606\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0232606","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

近年来,超材料在光学、声学、电磁学等领域显示出巨大的潜力。基于超材料的传感器已逐步应用于日常生产、生活和军事中。超材料是一种具有普通材料所不具备的独特性能的人造材料。通过巧妙的微观结构设计,它们可以实现不同的性能,并在全息投影、吸收材料和超分辨率显微镜等领域显示出巨大的潜力。传感器是将外部环境变化转换为可识别信号的设备,在医疗保健、工业和军事等各个领域发挥着至关重要的作用。因此,开发灵敏度高、检出限低、检测范围宽、易于集成的传感器具有重要意义。基于超材料的传感器不仅可以实现这些改进,而且还具有传统传感器所缺乏的抗干扰和隐身传感等优点。这些增强功能和新特性对传感器领域的发展具有重要意义。本文总结了超材料传感器在提高灵敏度、扩大检测范围和易于系统集成方面的优点。系统地讨论了它们在生物医学、气体传感等各个领域的应用。重点探讨超材料传感器在未来人类生活中的潜在应用和发展趋势,为该领域的发展提供系统的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metamaterials for high-performance smart sensors
In recent years, metamaterials have shown great potential in various fields such as optics, acoustics, and electromagnetics. Sensors based on metamaterials have been gradually applied in daily production, life, and military. Metamaterials are artificial materials with unique properties that ordinary materials do not possess. Through clever microstructure design, they can achieve different properties and have demonstrated significant potential in areas like holographic projection, absorbing materials, and super-resolution microscopy. Sensors are devices that convert external environmental changes into recognizable signals, playing a crucial role in various fields such as healthcare, industry, and military. Therefore, the development of sensors with high sensitivity, low detection limit, wide detection range, and easy integration is of great significance. Sensors based on metamaterials can not only achieve these improvements but also offer advantages like anti-interference and stealth sensing, which traditional sensors lack. These enhancements and new features are significant for the sensor field's development. This article summarizes the benefits of metamaterial sensors in terms of increased sensitivity, expanded detection range, and ease of system integration. It also systematically discusses their applications in various fields such as biomedical and gas sensing. The focus is on the potential applications and development trends of metamaterial-based sensors in the future of human life, providing systematic guidance for the field's advancement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信