OmpA控制外膜的秩序,分担机械负荷

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Georgina Benn, Carolina Borrelli, Dheeraj Prakaash, Alex N. T. Johnson, Vincent A. Fideli, Tahj Starr, Dylan Fitzmaurice, Ashton N. Combs, Martin Wühr, Enrique R. Rojas, Syma Khalid, Bart W. Hoogenboom, Thomas J. Silhavy
{"title":"OmpA控制外膜的秩序,分担机械负荷","authors":"Georgina Benn, Carolina Borrelli, Dheeraj Prakaash, Alex N. T. Johnson, Vincent A. Fideli, Tahj Starr, Dylan Fitzmaurice, Ashton N. Combs, Martin Wühr, Enrique R. Rojas, Syma Khalid, Bart W. Hoogenboom, Thomas J. Silhavy","doi":"10.1073/pnas.2416426121","DOIUrl":null,"url":null,"abstract":"OmpA, a predominant outer membrane (OM) protein in <jats:italic>Escherichia coli</jats:italic> , affects virulence, adhesion, and bacterial OM integrity. However, despite more than 50 y of research, the molecular basis for the role of OmpA has remained elusive. In this study, we demonstrate that OmpA organizes the OM protein lattice and mechanically connects it to the cell wall (CW). Using gene fusions, atomic force microscopy, simulations, and microfluidics, we show that the β-barrel domain of OmpA is critical for maintaining the permeability barrier, but both the β-barrel and CW–binding domains are necessary to enhance the cell envelope’s strength. OmpA integrates the compressive properties of the OM protein lattice with the tensile strength of the CW, forming a mechanically robust composite that increases overall integrity. This coupling likely underpins the ability of the entire envelope to function as a cohesive, resilient structure, critical for the survival of bacteria.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"21 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OmpA controls order in the outer membrane and shares the mechanical load\",\"authors\":\"Georgina Benn, Carolina Borrelli, Dheeraj Prakaash, Alex N. T. Johnson, Vincent A. Fideli, Tahj Starr, Dylan Fitzmaurice, Ashton N. Combs, Martin Wühr, Enrique R. Rojas, Syma Khalid, Bart W. Hoogenboom, Thomas J. Silhavy\",\"doi\":\"10.1073/pnas.2416426121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OmpA, a predominant outer membrane (OM) protein in <jats:italic>Escherichia coli</jats:italic> , affects virulence, adhesion, and bacterial OM integrity. However, despite more than 50 y of research, the molecular basis for the role of OmpA has remained elusive. In this study, we demonstrate that OmpA organizes the OM protein lattice and mechanically connects it to the cell wall (CW). Using gene fusions, atomic force microscopy, simulations, and microfluidics, we show that the β-barrel domain of OmpA is critical for maintaining the permeability barrier, but both the β-barrel and CW–binding domains are necessary to enhance the cell envelope’s strength. OmpA integrates the compressive properties of the OM protein lattice with the tensile strength of the CW, forming a mechanically robust composite that increases overall integrity. This coupling likely underpins the ability of the entire envelope to function as a cohesive, resilient structure, critical for the survival of bacteria.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2416426121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2416426121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

OmpA是大肠杆菌中主要的外膜(OM)蛋白,影响毒力、粘附性和细菌外膜完整性。然而,尽管经过了50多年的研究,OmpA作用的分子基础仍然难以捉摸。在这项研究中,我们证明了OmpA组织OM蛋白晶格并将其机械地连接到细胞壁(CW)。通过基因融合、原子力显微镜、模拟和微流体,我们发现OmpA的β-桶结构域对于维持渗透性屏障至关重要,但β-桶结构域和w -结合结构域对于增强细胞包膜的强度都是必需的。OmpA结合了OM蛋白晶格的压缩性能和CW的抗拉强度,形成了一种机械坚固的复合材料,提高了整体的完整性。这种耦合可能巩固了整个包膜作为一个有凝聚力、有弹性的结构的能力,这对细菌的生存至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OmpA controls order in the outer membrane and shares the mechanical load
OmpA, a predominant outer membrane (OM) protein in Escherichia coli , affects virulence, adhesion, and bacterial OM integrity. However, despite more than 50 y of research, the molecular basis for the role of OmpA has remained elusive. In this study, we demonstrate that OmpA organizes the OM protein lattice and mechanically connects it to the cell wall (CW). Using gene fusions, atomic force microscopy, simulations, and microfluidics, we show that the β-barrel domain of OmpA is critical for maintaining the permeability barrier, but both the β-barrel and CW–binding domains are necessary to enhance the cell envelope’s strength. OmpA integrates the compressive properties of the OM protein lattice with the tensile strength of the CW, forming a mechanically robust composite that increases overall integrity. This coupling likely underpins the ability of the entire envelope to function as a cohesive, resilient structure, critical for the survival of bacteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信