{"title":"预防辐射和化学毒性:来自骨髓芯片的见解","authors":"Milica Radisic","doi":"10.1016/j.stem.2024.11.009","DOIUrl":null,"url":null,"abstract":"Species-specific differences motivate the development of human hematopoiesis models. Georgescu et al.<span><span><sup>1</sup></span></span> present a microfluidic model of the human bone marrow perivascular niche to capture innate immune cell mobilization. Automated cultivation and high-content analysis for robust insights enabled studies of radiation injury and chemotherapy dosing.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"14 3-4 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preventing radiation and chemo toxicity: Insights from bone marrow-on-a-chip\",\"authors\":\"Milica Radisic\",\"doi\":\"10.1016/j.stem.2024.11.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Species-specific differences motivate the development of human hematopoiesis models. Georgescu et al.<span><span><sup>1</sup></span></span> present a microfluidic model of the human bone marrow perivascular niche to capture innate immune cell mobilization. Automated cultivation and high-content analysis for robust insights enabled studies of radiation injury and chemotherapy dosing.\",\"PeriodicalId\":9665,\"journal\":{\"name\":\"Cell stem cell\",\"volume\":\"14 3-4 1\",\"pages\":\"\"},\"PeriodicalIF\":19.8000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell stem cell\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stem.2024.11.009\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2024.11.009","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Preventing radiation and chemo toxicity: Insights from bone marrow-on-a-chip
Species-specific differences motivate the development of human hematopoiesis models. Georgescu et al.1 present a microfluidic model of the human bone marrow perivascular niche to capture innate immune cell mobilization. Automated cultivation and high-content analysis for robust insights enabled studies of radiation injury and chemotherapy dosing.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.