一个碍手碍脚的手指:当绑定不仅仅是绑定状态时

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
David Neuhaus, Katherine Stott
{"title":"一个碍手碍脚的手指:当绑定不仅仅是绑定状态时","authors":"David Neuhaus, Katherine Stott","doi":"10.1016/j.str.2024.11.001","DOIUrl":null,"url":null,"abstract":"In this issue of <em>Structure</em>, Viennet et al.<span><span><sup>1</sup></span></span> report a study characterizing the DNA binding by a three-zinc-finger fragment from the transcription factor BCL11A, with the unusual feature that an interfinger interaction in the free protein is disrupted during binding, which provides a positive entropic contribution that enhances the affinity.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"5 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A finger that gets in the way: When binding isn’t just about the bound state\",\"authors\":\"David Neuhaus, Katherine Stott\",\"doi\":\"10.1016/j.str.2024.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this issue of <em>Structure</em>, Viennet et al.<span><span><sup>1</sup></span></span> report a study characterizing the DNA binding by a three-zinc-finger fragment from the transcription factor BCL11A, with the unusual feature that an interfinger interaction in the free protein is disrupted during binding, which provides a positive entropic contribution that enhances the affinity.\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2024.11.001\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.11.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本期的《结构》杂志上,Viennet等人报道了一项研究,描述了转录因子BCL11A的三锌指片段与DNA的结合,其不寻常的特征是游离蛋白中的指间相互作用在结合过程中被破坏,这提供了一个正熵贡献,增强了亲和力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A finger that gets in the way: When binding isn’t just about the bound state
In this issue of Structure, Viennet et al.1 report a study characterizing the DNA binding by a three-zinc-finger fragment from the transcription factor BCL11A, with the unusual feature that an interfinger interaction in the free protein is disrupted during binding, which provides a positive entropic contribution that enhances the affinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structure
Structure 生物-生化与分子生物学
CiteScore
8.90
自引率
1.80%
发文量
155
审稿时长
3-8 weeks
期刊介绍: Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome. In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信