{"title":"旋回扭转科阿贝尔变种的行列","authors":"Ari Shnidman, Ariel Weiss","doi":"10.2140/ant.2025.19.39","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> be an abelian variety over a number field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math>, and suppose that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℤ</mi><mo stretchy=\"false\">[</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">]</mo></math> embeds in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> End</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mover accent=\"true\"><mrow><mi>F</mi></mrow><mo accent=\"true\">¯</mo></mover></mrow></msub><mi>A</mi></math>, for some root of unity <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ζ</mi></mrow><mrow><mi>n</mi></mrow></msub></math> of order <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>=</mo> <msup><mrow><mn>3</mn></mrow><mrow><mi>m</mi></mrow></msup></math>. Assuming that the Galois action on the finite group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi><mo stretchy=\"false\">[</mo><mn>1</mn>\n<mo>−</mo> <msub><mrow><mi>ζ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">]</mo></math> is sufficiently reducible, we bound the average rank of the Mordell–Weil groups <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>F</mi><mo stretchy=\"false\">)</mo></math>, as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msub></math> varies through the family of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math>-twists of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math>. Combining this result with the recently proved uniform Mordell–Lang conjecture, we prove near-uniform bounds for the number of rational points in twist families of bicyclic trigonal curves <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup>\n<mo>=</mo>\n<mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math>, as well as in twist families of theta divisors of cyclic trigonal curves <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup>\n<mo>=</mo>\n<mi>f</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math>. Our main technical result is the determination of the average size of a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>3</mn></math>-isogeny Selmer group in a family of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math>-twists. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"262 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ranks of abelian varieties in cyclotomic twist families\",\"authors\":\"Ari Shnidman, Ariel Weiss\",\"doi\":\"10.2140/ant.2025.19.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>A</mi></math> be an abelian variety over a number field <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>F</mi></math>, and suppose that <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℤ</mi><mo stretchy=\\\"false\\\">[</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">]</mo></math> embeds in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> End</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mover accent=\\\"true\\\"><mrow><mi>F</mi></mrow><mo accent=\\\"true\\\">¯</mo></mover></mrow></msub><mi>A</mi></math>, for some root of unity <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>ζ</mi></mrow><mrow><mi>n</mi></mrow></msub></math> of order <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi>\\n<mo>=</mo> <msup><mrow><mn>3</mn></mrow><mrow><mi>m</mi></mrow></msup></math>. Assuming that the Galois action on the finite group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>A</mi><mo stretchy=\\\"false\\\">[</mo><mn>1</mn>\\n<mo>−</mo> <msub><mrow><mi>ζ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">]</mo></math> is sufficiently reducible, we bound the average rank of the Mordell–Weil groups <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>F</mi><mo stretchy=\\\"false\\\">)</mo></math>, as <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msub></math> varies through the family of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math>-twists of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>A</mi></math>. Combining this result with the recently proved uniform Mordell–Lang conjecture, we prove near-uniform bounds for the number of rational points in twist families of bicyclic trigonal curves <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup>\\n<mo>=</mo>\\n<mi>f</mi><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math>, as well as in twist families of theta divisors of cyclic trigonal curves <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup>\\n<mo>=</mo>\\n<mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo></math>. Our main technical result is the determination of the average size of a <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>3</mn></math>-isogeny Selmer group in a family of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math>-twists. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"262 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2025.19.39\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.39","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设A是数字域F上的一个阿贝尔变,并假设对于n阶的单位ζn = 3m的某个根,n [ζn]嵌入到End (F¯A)中。假设有限群A[1−ζn]上的伽罗瓦作用是充分可约的,我们对modell - weil群Ad(F)的平均秩进行了定界,当Ad在A的μ2n-扭转族中变化时,结合最近证明的一致modell - lang猜想,我们证明了双环三角曲线y3= F (x2)的扭转族中有理点个数的近似一致界,以及循环三角曲线y3= F (x)的θ因子扭转族中的有理点个数的近似一致界。我们的主要技术成果是确定μ2n-扭转家族中3-等基因Selmer基团的平均大小。
Ranks of abelian varieties in cyclotomic twist families
Let be an abelian variety over a number field , and suppose that embeds in , for some root of unity of order . Assuming that the Galois action on the finite group is sufficiently reducible, we bound the average rank of the Mordell–Weil groups , as varies through the family of -twists of . Combining this result with the recently proved uniform Mordell–Lang conjecture, we prove near-uniform bounds for the number of rational points in twist families of bicyclic trigonal curves , as well as in twist families of theta divisors of cyclic trigonal curves . Our main technical result is the determination of the average size of a -isogeny Selmer group in a family of -twists.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.