7T时使用2D RARE MRI进行黑血MRI:体外测试和体内验证。

Eva Peschke, Mariya S Pravdivtseva, Olav Jansen, Naomi Larsen, Jan-Bernd Hövener
{"title":"7T时使用2D RARE MRI进行黑血MRI:体外测试和体内验证。","authors":"Eva Peschke, Mariya S Pravdivtseva, Olav Jansen, Naomi Larsen, Jan-Bernd Hövener","doi":"10.1016/j.zemedi.2024.11.002","DOIUrl":null,"url":null,"abstract":"<p><p>Vessel walls play a crucial role in many inflammatory vascular diseases. Vessel wall imaging (VWI) using mangnetic resonance imaging (MRI) is one of the few methods by which vessel walls and inflammation can be visualized noninvasively, in vivo, and without ionizing radiation. VWI is based on black-blood (BB) MRI, where the signal from flowing blood is suppressed and contrast agent accumulation in the (inflamed) vessel wall is highlighted. Here, high resolution, T1 weighting, suppression of fat and flowing spins is essential. Whereas VWI is often applied in humans, only very few reports describe its use in small animals. Here, we investigated whether BB MRI for rodents can be implemented using a state-of-the-art, but commercially available, preclinical MRI system and imaging sequence. We identified 2D spin-echo (RARE)-based BB-MRI as a promising sequence that is widely available and not vendor dependent. First, we investigated the properties of the sequence in vitro with respect to image contrast, resolution, the suppression of signal of flowing spins and fat using a newly developed, 3D-printed model setup (cylindrical model with exchangeable nuclear magnetic resonance tubes and flow tube in agarose, printed with stereolithography). For example, good signal-to-noise ratio, BB and T1 contrast were obtained for TE = 5 ms for slice thickness equal or below 0.352 mm or slice thickness = 0.8 mm with TE at least 25 ms. In vivo, we obtained a pronounced BB effect for both intracranial and abdominal vessels of healthy rats down to a 0.25 mm diameter in no more than 1:36 min with TE = 12 ms, TR = 750 ms, voxel 156 × 156 × 800 µm<sup>3</sup>, and 11 slices. Compared to in vitro, we were able to reduce TE without apparent artifacts likely because the flow was faster in vivo than in vitro. Additionally, we needed to increase the resolution to image small vessels. Thus, we found that BB-MRI with 2D spin-echo sequences is feasible on rodents with state-of-the-art, commercially available preclinical MRI systems. We believe that these results will facilitate the development and application of rodent VWI in longitudinal studies, which, in comparison to histology, may reduce the number of needed animals and intersubject variability at the same time.</p>","PeriodicalId":101315,"journal":{"name":"Zeitschrift fur medizinische Physik","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Black-blood MRI at 7T using 2D RARE MRI: In vitro testing and in vivo demonstration.\",\"authors\":\"Eva Peschke, Mariya S Pravdivtseva, Olav Jansen, Naomi Larsen, Jan-Bernd Hövener\",\"doi\":\"10.1016/j.zemedi.2024.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vessel walls play a crucial role in many inflammatory vascular diseases. Vessel wall imaging (VWI) using mangnetic resonance imaging (MRI) is one of the few methods by which vessel walls and inflammation can be visualized noninvasively, in vivo, and without ionizing radiation. VWI is based on black-blood (BB) MRI, where the signal from flowing blood is suppressed and contrast agent accumulation in the (inflamed) vessel wall is highlighted. Here, high resolution, T1 weighting, suppression of fat and flowing spins is essential. Whereas VWI is often applied in humans, only very few reports describe its use in small animals. Here, we investigated whether BB MRI for rodents can be implemented using a state-of-the-art, but commercially available, preclinical MRI system and imaging sequence. We identified 2D spin-echo (RARE)-based BB-MRI as a promising sequence that is widely available and not vendor dependent. First, we investigated the properties of the sequence in vitro with respect to image contrast, resolution, the suppression of signal of flowing spins and fat using a newly developed, 3D-printed model setup (cylindrical model with exchangeable nuclear magnetic resonance tubes and flow tube in agarose, printed with stereolithography). For example, good signal-to-noise ratio, BB and T1 contrast were obtained for TE = 5 ms for slice thickness equal or below 0.352 mm or slice thickness = 0.8 mm with TE at least 25 ms. In vivo, we obtained a pronounced BB effect for both intracranial and abdominal vessels of healthy rats down to a 0.25 mm diameter in no more than 1:36 min with TE = 12 ms, TR = 750 ms, voxel 156 × 156 × 800 µm<sup>3</sup>, and 11 slices. Compared to in vitro, we were able to reduce TE without apparent artifacts likely because the flow was faster in vivo than in vitro. Additionally, we needed to increase the resolution to image small vessels. Thus, we found that BB-MRI with 2D spin-echo sequences is feasible on rodents with state-of-the-art, commercially available preclinical MRI systems. We believe that these results will facilitate the development and application of rodent VWI in longitudinal studies, which, in comparison to histology, may reduce the number of needed animals and intersubject variability at the same time.</p>\",\"PeriodicalId\":101315,\"journal\":{\"name\":\"Zeitschrift fur medizinische Physik\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur medizinische Physik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.zemedi.2024.11.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur medizinische Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.zemedi.2024.11.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

血管壁在许多炎症性血管疾病中起着至关重要的作用。使用磁共振成像(MRI)进行血管壁成像(VWI)是为数不多的可以在体内无创、无电离辐射的情况下观察血管壁和炎症的方法之一。VWI是基于黑血(BB) MRI,血流信号被抑制,造影剂在(发炎的)血管壁积聚被突出显示。在这里,高分辨率,T1加权,抑制脂肪和流动旋转是必不可少的。虽然VWI经常用于人类,但只有很少的报道描述了它在小动物中的应用。在这里,我们研究了啮齿动物的BB MRI是否可以使用最先进的,但可商用的临床前MRI系统和成像序列来实现。我们确定了基于二维自旋回波(RARE)的BB-MRI是一种有前途的序列,广泛可用且不依赖于供应商。首先,我们在体外研究了序列在图像对比度、分辨率、流动自旋和脂肪信号抑制方面的特性,使用了一种新开发的3d打印模型设置(具有可交换核磁共振管和琼脂糖流管的圆柱形模型,用立体光刻打印)。例如,当TE = 5 ms,切片厚度等于或低于0.352 mm或切片厚度= 0.8 mm,且TE至少为25 ms时,可以获得良好的信噪比、BB和T1对比度。体内,我们获得了明显的BB颅内和腹部血管的影响健康的老鼠到0.25 毫米直径不超过1:36 与TE = 12分钟 女士,TR = 750 女士,体素156 ×  156×800  µm3,和11片。与体外相比,我们能够在没有明显伪影的情况下降低TE,这可能是因为体内血流比体外快。此外,我们还需要提高小血管成像的分辨率。因此,我们发现带有2D自旋回波序列的BB-MRI在具有最先进的商业化临床前MRI系统的啮齿动物上是可行的。我们相信这些结果将促进啮齿动物VWI在纵向研究中的发展和应用,与组织学相比,可以减少所需动物数量和受试者间变异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Black-blood MRI at 7T using 2D RARE MRI: In vitro testing and in vivo demonstration.

Vessel walls play a crucial role in many inflammatory vascular diseases. Vessel wall imaging (VWI) using mangnetic resonance imaging (MRI) is one of the few methods by which vessel walls and inflammation can be visualized noninvasively, in vivo, and without ionizing radiation. VWI is based on black-blood (BB) MRI, where the signal from flowing blood is suppressed and contrast agent accumulation in the (inflamed) vessel wall is highlighted. Here, high resolution, T1 weighting, suppression of fat and flowing spins is essential. Whereas VWI is often applied in humans, only very few reports describe its use in small animals. Here, we investigated whether BB MRI for rodents can be implemented using a state-of-the-art, but commercially available, preclinical MRI system and imaging sequence. We identified 2D spin-echo (RARE)-based BB-MRI as a promising sequence that is widely available and not vendor dependent. First, we investigated the properties of the sequence in vitro with respect to image contrast, resolution, the suppression of signal of flowing spins and fat using a newly developed, 3D-printed model setup (cylindrical model with exchangeable nuclear magnetic resonance tubes and flow tube in agarose, printed with stereolithography). For example, good signal-to-noise ratio, BB and T1 contrast were obtained for TE = 5 ms for slice thickness equal or below 0.352 mm or slice thickness = 0.8 mm with TE at least 25 ms. In vivo, we obtained a pronounced BB effect for both intracranial and abdominal vessels of healthy rats down to a 0.25 mm diameter in no more than 1:36 min with TE = 12 ms, TR = 750 ms, voxel 156 × 156 × 800 µm3, and 11 slices. Compared to in vitro, we were able to reduce TE without apparent artifacts likely because the flow was faster in vivo than in vitro. Additionally, we needed to increase the resolution to image small vessels. Thus, we found that BB-MRI with 2D spin-echo sequences is feasible on rodents with state-of-the-art, commercially available preclinical MRI systems. We believe that these results will facilitate the development and application of rodent VWI in longitudinal studies, which, in comparison to histology, may reduce the number of needed animals and intersubject variability at the same time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信