Fengjiao Yue , Si Li , Lijuan Wu , Xuerong Chen , Jianhua Zhu
{"title":"结合人工神经网络算法的血浆自身荧光光谱快速诊断潜伏性和活动性肺结核。","authors":"Fengjiao Yue , Si Li , Lijuan Wu , Xuerong Chen , Jianhua Zhu","doi":"10.1016/j.pdpdt.2024.104426","DOIUrl":null,"url":null,"abstract":"<div><div>The existing clinical diagnostic methods of pulmonary tuberculosis (TB) usually have some of the following limitations, such as time-consuming, invasive, radioactive, insufficiently sensitive and accurate. This study demonstrates the possibility of using blood plasma autofluorescence spectroscopy and Artificial Neural Network (ANN) algorithm for the rapid and accurate diagnosis of latent and active pulmonary TB from healthy subjects. The fluorescence spectra of blood plasma from 18 healthy volunteers, 12 individuals with latent TB infections and 80 active TB patients are measured and analyzed. By optimizing the ANN structure and activation functions, the ANN three-classification model achieves average classification accuracy of 96.3 %, and the accuracy of healthy persons, latent TB infections and active TB patients are 100 %, 83.3 % and 97.5 %, respectively, which is much better than the results of traditional Principal component analysis (PCA) and Linear discriminant analysis (LDA) method. To the best of our knowledge, this is the first research work of differentiating latent, active pulmonary TB cases from healthy samples with autofluorescence spectroscopy. As a rapid, accurate, safe, label-free, non-invasive and cost-effective technique, it can be developed as a promising diagnostic tool for the screening of pulmonary TB disease in the early stage.</div></div>","PeriodicalId":20141,"journal":{"name":"Photodiagnosis and Photodynamic Therapy","volume":"50 ","pages":"Article 104426"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid diagnosis of latent and active pulmonary tuberculosis by autofluorescence spectroscopy of blood plasma combined with artificial neural network algorithm\",\"authors\":\"Fengjiao Yue , Si Li , Lijuan Wu , Xuerong Chen , Jianhua Zhu\",\"doi\":\"10.1016/j.pdpdt.2024.104426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The existing clinical diagnostic methods of pulmonary tuberculosis (TB) usually have some of the following limitations, such as time-consuming, invasive, radioactive, insufficiently sensitive and accurate. This study demonstrates the possibility of using blood plasma autofluorescence spectroscopy and Artificial Neural Network (ANN) algorithm for the rapid and accurate diagnosis of latent and active pulmonary TB from healthy subjects. The fluorescence spectra of blood plasma from 18 healthy volunteers, 12 individuals with latent TB infections and 80 active TB patients are measured and analyzed. By optimizing the ANN structure and activation functions, the ANN three-classification model achieves average classification accuracy of 96.3 %, and the accuracy of healthy persons, latent TB infections and active TB patients are 100 %, 83.3 % and 97.5 %, respectively, which is much better than the results of traditional Principal component analysis (PCA) and Linear discriminant analysis (LDA) method. To the best of our knowledge, this is the first research work of differentiating latent, active pulmonary TB cases from healthy samples with autofluorescence spectroscopy. As a rapid, accurate, safe, label-free, non-invasive and cost-effective technique, it can be developed as a promising diagnostic tool for the screening of pulmonary TB disease in the early stage.</div></div>\",\"PeriodicalId\":20141,\"journal\":{\"name\":\"Photodiagnosis and Photodynamic Therapy\",\"volume\":\"50 \",\"pages\":\"Article 104426\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photodiagnosis and Photodynamic Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572100024004629\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photodiagnosis and Photodynamic Therapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572100024004629","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Rapid diagnosis of latent and active pulmonary tuberculosis by autofluorescence spectroscopy of blood plasma combined with artificial neural network algorithm
The existing clinical diagnostic methods of pulmonary tuberculosis (TB) usually have some of the following limitations, such as time-consuming, invasive, radioactive, insufficiently sensitive and accurate. This study demonstrates the possibility of using blood plasma autofluorescence spectroscopy and Artificial Neural Network (ANN) algorithm for the rapid and accurate diagnosis of latent and active pulmonary TB from healthy subjects. The fluorescence spectra of blood plasma from 18 healthy volunteers, 12 individuals with latent TB infections and 80 active TB patients are measured and analyzed. By optimizing the ANN structure and activation functions, the ANN three-classification model achieves average classification accuracy of 96.3 %, and the accuracy of healthy persons, latent TB infections and active TB patients are 100 %, 83.3 % and 97.5 %, respectively, which is much better than the results of traditional Principal component analysis (PCA) and Linear discriminant analysis (LDA) method. To the best of our knowledge, this is the first research work of differentiating latent, active pulmonary TB cases from healthy samples with autofluorescence spectroscopy. As a rapid, accurate, safe, label-free, non-invasive and cost-effective technique, it can be developed as a promising diagnostic tool for the screening of pulmonary TB disease in the early stage.
期刊介绍:
Photodiagnosis and Photodynamic Therapy is an international journal for the dissemination of scientific knowledge and clinical developments of Photodiagnosis and Photodynamic Therapy in all medical specialties. The journal publishes original articles, review articles, case presentations, "how-to-do-it" articles, Letters to the Editor, short communications and relevant images with short descriptions. All submitted material is subject to a strict peer-review process.