用于生物和化学检测的窃窃廊模式光学谐振器:当前实践、未来展望和挑战。

Shuang Hao, Judith Su
{"title":"用于生物和化学检测的窃窃廊模式光学谐振器:当前实践、未来展望和挑战。","authors":"Shuang Hao, Judith Su","doi":"10.1088/1361-6633/ad99e7","DOIUrl":null,"url":null,"abstract":"<p><p>Sensors are important for a wide variety of applications include medical diagnostics and environmental monitoring. Due to their long photon confinement times, whispering gallery mode (WGM) sensors are among the most sensitive sensors currently in existence. We briefly discuss what are WGM sensors, the principles of WGM sensing, and the history of the field, beginning with Mie theory. We discuss recent work in the field on using these WGM resonators as sensors, focusing particularly on biological and chemical sensing applications. We discuss how sensorgrams are acquired and fundamental measurement limits. In addition, we discuss how to interpret binding curves and extract physical parameters such as binding affinity constants. We discuss the controversy surrounding single-molecule detection and discuss hybrid WGM nanoparticle sensors. In addition, we place these sensors in context with others sensing technologies both labeled and label-free. Finally, we discuss what we believe are the most promising applications for these devices, outline remaining challenges, and provide an outlook for the future.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whispering gallery mode optical resonators for biological and chemical detection: current practices, future perspectives, and challenges.\",\"authors\":\"Shuang Hao, Judith Su\",\"doi\":\"10.1088/1361-6633/ad99e7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sensors are important for a wide variety of applications include medical diagnostics and environmental monitoring. Due to their long photon confinement times, whispering gallery mode (WGM) sensors are among the most sensitive sensors currently in existence. We briefly discuss what are WGM sensors, the principles of WGM sensing, and the history of the field, beginning with Mie theory. We discuss recent work in the field on using these WGM resonators as sensors, focusing particularly on biological and chemical sensing applications. We discuss how sensorgrams are acquired and fundamental measurement limits. In addition, we discuss how to interpret binding curves and extract physical parameters such as binding affinity constants. We discuss the controversy surrounding single-molecule detection and discuss hybrid WGM nanoparticle sensors. In addition, we place these sensors in context with others sensing technologies both labeled and label-free. Finally, we discuss what we believe are the most promising applications for these devices, outline remaining challenges, and provide an outlook for the future.</p>\",\"PeriodicalId\":74666,\"journal\":{\"name\":\"Reports on progress in physics. Physical Society (Great Britain)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on progress in physics. Physical Society (Great Britain)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6633/ad99e7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on progress in physics. Physical Society (Great Britain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6633/ad99e7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传感器对于包括医疗诊断和环境监测在内的各种应用都很重要。由于其较长的光子约束时间,低语通道模式传感器是目前存在的最灵敏的传感器之一。我们简要地讨论了什么是窃窃私语通道模式传感器,窃窃私语通道模式传感的原理,以及该领域的历史,从Mie理论开始。我们讨论了最近在使用这些窃窃私语走廊模式谐振器作为传感器的领域的工作,特别关注生物和化学传感应用。我们讨论了如何获取传感器图和基本的测量限制。此外,我们讨论了如何解释结合曲线和提取物理参数,如结合亲和常数。我们讨论了围绕单分子检测的争议,并讨论了混合低语通道模式纳米颗粒传感器。此外,我们将这些传感器与其他有标签和无标签的传感技术放在一起。最后,我们讨论了我们认为这些设备最有前途的应用,概述了仍然存在的挑战,并对未来进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Whispering gallery mode optical resonators for biological and chemical detection: current practices, future perspectives, and challenges.

Sensors are important for a wide variety of applications include medical diagnostics and environmental monitoring. Due to their long photon confinement times, whispering gallery mode (WGM) sensors are among the most sensitive sensors currently in existence. We briefly discuss what are WGM sensors, the principles of WGM sensing, and the history of the field, beginning with Mie theory. We discuss recent work in the field on using these WGM resonators as sensors, focusing particularly on biological and chemical sensing applications. We discuss how sensorgrams are acquired and fundamental measurement limits. In addition, we discuss how to interpret binding curves and extract physical parameters such as binding affinity constants. We discuss the controversy surrounding single-molecule detection and discuss hybrid WGM nanoparticle sensors. In addition, we place these sensors in context with others sensing technologies both labeled and label-free. Finally, we discuss what we believe are the most promising applications for these devices, outline remaining challenges, and provide an outlook for the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信