Saurabh Bhattacharya, Michal Bejerano-Sagie, Miriam Ravins, Liat Zeroni, Prabhjot Kaur, Venkadesaperumal Gopu, Ilan Rosenshine, Sigal Ben-Yehuda
{"title":"鞭毛旋转有利于细菌共轭质粒的转移。","authors":"Saurabh Bhattacharya, Michal Bejerano-Sagie, Miriam Ravins, Liat Zeroni, Prabhjot Kaur, Venkadesaperumal Gopu, Ilan Rosenshine, Sigal Ben-Yehuda","doi":"10.1038/s44318-024-00320-0","DOIUrl":null,"url":null,"abstract":"<p><p>Conjugation-mediated DNA delivery is the primary mode for antibiotic resistance spread in bacteria; yet, molecular mechanisms regulating the conjugation process remain largely unexplored. While conjugative plasmids typically require bacterial attachment to solid surfaces for facilitation of donor-to-recipient proximity, the pLS20 conjugative plasmid, prevalent among Gram-positive Bacillus spp., uniquely requires fluid environments to enhance its transfer. Here, we show that pLS20, carried by Bacillus subtilis, induces multicellular clustering, which can accommodate various species, hence offering a stable platform for DNA delivery in a liquid milieu. We further discovered that induction of pLS20 promoters, governing crucial conjugative genes, is dependent on the presence of donor cell flagella, the major bacterial motility organelle. Moreover, the pLS20 regulatory circuit is controlled by a mechanosensing signal transduction pathway responsive to flagella rotation, thus activating conjugation gene expression exclusively during the host motile phase. This flagella-conjugation coupling strategy may allow the dissemination of the plasmid to remote destinations, allowing infiltration into new niches.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"587-611"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730352/pdf/","citationCount":"0","resultStr":"{\"title\":\"Flagellar rotation facilitates the transfer of a bacterial conjugative plasmid.\",\"authors\":\"Saurabh Bhattacharya, Michal Bejerano-Sagie, Miriam Ravins, Liat Zeroni, Prabhjot Kaur, Venkadesaperumal Gopu, Ilan Rosenshine, Sigal Ben-Yehuda\",\"doi\":\"10.1038/s44318-024-00320-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conjugation-mediated DNA delivery is the primary mode for antibiotic resistance spread in bacteria; yet, molecular mechanisms regulating the conjugation process remain largely unexplored. While conjugative plasmids typically require bacterial attachment to solid surfaces for facilitation of donor-to-recipient proximity, the pLS20 conjugative plasmid, prevalent among Gram-positive Bacillus spp., uniquely requires fluid environments to enhance its transfer. Here, we show that pLS20, carried by Bacillus subtilis, induces multicellular clustering, which can accommodate various species, hence offering a stable platform for DNA delivery in a liquid milieu. We further discovered that induction of pLS20 promoters, governing crucial conjugative genes, is dependent on the presence of donor cell flagella, the major bacterial motility organelle. Moreover, the pLS20 regulatory circuit is controlled by a mechanosensing signal transduction pathway responsive to flagella rotation, thus activating conjugation gene expression exclusively during the host motile phase. This flagella-conjugation coupling strategy may allow the dissemination of the plasmid to remote destinations, allowing infiltration into new niches.</p>\",\"PeriodicalId\":50533,\"journal\":{\"name\":\"EMBO Journal\",\"volume\":\" \",\"pages\":\"587-611\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730352/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-024-00320-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00320-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Flagellar rotation facilitates the transfer of a bacterial conjugative plasmid.
Conjugation-mediated DNA delivery is the primary mode for antibiotic resistance spread in bacteria; yet, molecular mechanisms regulating the conjugation process remain largely unexplored. While conjugative plasmids typically require bacterial attachment to solid surfaces for facilitation of donor-to-recipient proximity, the pLS20 conjugative plasmid, prevalent among Gram-positive Bacillus spp., uniquely requires fluid environments to enhance its transfer. Here, we show that pLS20, carried by Bacillus subtilis, induces multicellular clustering, which can accommodate various species, hence offering a stable platform for DNA delivery in a liquid milieu. We further discovered that induction of pLS20 promoters, governing crucial conjugative genes, is dependent on the presence of donor cell flagella, the major bacterial motility organelle. Moreover, the pLS20 regulatory circuit is controlled by a mechanosensing signal transduction pathway responsive to flagella rotation, thus activating conjugation gene expression exclusively during the host motile phase. This flagella-conjugation coupling strategy may allow the dissemination of the plasmid to remote destinations, allowing infiltration into new niches.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.