泵-泄漏-共输模型的数学性质。

IF 2.2 4区 数学 Q2 BIOLOGY
Vincent Ouellet, Nicolas Doyon, Antoine G Godin, Pierre Marquet
{"title":"泵-泄漏-共输模型的数学性质。","authors":"Vincent Ouellet, Nicolas Doyon, Antoine G Godin, Pierre Marquet","doi":"10.1007/s00285-024-02163-z","DOIUrl":null,"url":null,"abstract":"<p><p>Models of ordinary differential equations are often used to describe the electrical, ionic and volumetric responses of cells to external stimuli. Although these cellular models are often solved numerically, rigorous evidence regarding their steady state solutions is scarce. In this work, we provide a formalism defining the conditions ensuring the existence and uniqueness of a steady-state solution in a large class of models including leak channels, a pump and cotransporters. Our work generalizes previous results and provides explicit conditions that a model must satisfy to guarantee the existence and uniqueness of a steady state.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"90 1","pages":"2"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical properties of pump-leak-cotransport models.\",\"authors\":\"Vincent Ouellet, Nicolas Doyon, Antoine G Godin, Pierre Marquet\",\"doi\":\"10.1007/s00285-024-02163-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Models of ordinary differential equations are often used to describe the electrical, ionic and volumetric responses of cells to external stimuli. Although these cellular models are often solved numerically, rigorous evidence regarding their steady state solutions is scarce. In this work, we provide a formalism defining the conditions ensuring the existence and uniqueness of a steady-state solution in a large class of models including leak channels, a pump and cotransporters. Our work generalizes previous results and provides explicit conditions that a model must satisfy to guarantee the existence and uniqueness of a steady state.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"90 1\",\"pages\":\"2\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-024-02163-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02163-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

常微分方程模型常用于描述细胞对外界刺激的电、离子和体积反应。虽然这些细胞模型通常用数值方法求解,但关于它们的稳态解的严格证据很少。在这项工作中,我们提供了一种形式,定义了在包括泄漏通道,泵和共转运体在内的大类模型中确保稳态解存在和唯一性的条件。我们的工作推广了以前的结果,并提供了一个模型必须满足的条件,以保证稳态的存在和唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical properties of pump-leak-cotransport models.

Models of ordinary differential equations are often used to describe the electrical, ionic and volumetric responses of cells to external stimuli. Although these cellular models are often solved numerically, rigorous evidence regarding their steady state solutions is scarce. In this work, we provide a formalism defining the conditions ensuring the existence and uniqueness of a steady-state solution in a large class of models including leak channels, a pump and cotransporters. Our work generalizes previous results and provides explicit conditions that a model must satisfy to guarantee the existence and uniqueness of a steady state.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信