月经周期阶段不影响肌肉蛋白质合成或全身肌纤维蛋白水解对阻力运动的反应。

IF 4.7 2区 医学 Q1 NEUROSCIENCES
Lauren M Colenso-Semple, James McKendry, Changhyun Lim, Philip J Atherton, Daniel J Wilkinson, K Smith, Stuart M Phillips
{"title":"月经周期阶段不影响肌肉蛋白质合成或全身肌纤维蛋白水解对阻力运动的反应。","authors":"Lauren M Colenso-Semple, James McKendry, Changhyun Lim, Philip J Atherton, Daniel J Wilkinson, K Smith, Stuart M Phillips","doi":"10.1113/JP287342","DOIUrl":null,"url":null,"abstract":"<p><p>It has been hypothesised that skeletal muscle protein turnover is affected by menstrual cycle phase with a more anabolic environment during the follicular vs. the luteal phase. We assessed the influence of menstrual cycle phase on muscle protein synthesis and myofibrillar protein breakdown in response to 6 days of controlled resistance exercise in young females during peak oestrogen and peak progesterone, using stable isotopes, unbiased metabolomics and muscle biopsies. We used comprehensive menstrual cycle phase-detection methods, including cycle tracking, blood samples and urinary test kits, to classify menstrual phases. Participants (n = 12) completed two 6 day study phases in a randomised order: late follicular phase and mid-luteal phase. Participants performed unilateral resistance exercise in each menstrual cycle phase, exercising the contralateral leg in each phase in a counterbalanced manner. Follicular phase myofibrillar protein synthesis (MPS) rates were 1.33 ± 0.27% h<sup>-1</sup> in the control leg and 1.52 ± 0.27% h<sup>-1</sup> in the exercise leg. Luteal phase MPS was 1.28 ± 0.27% h<sup>-1</sup> in the control leg and 1.46 ± 0.25% h<sup>-1</sup> in the exercise leg. We observed a significant effect of exercise (P < 0.001) but no effect of cycle phase or interaction. There was no significant effect of menstrual cycle phase on whole-body myofibrillar protein breakdown (P = 0.24). Using unbiased metabolomics, we observed no notable phase-specific changes in circulating blood metabolites associated with any particular menstrual cycle phase. Fluctuations in endogenous ovarian hormones influenced neither MPS, nor MPB in response to resistance exercise. Skeletal muscle is not more anabolically responsive to resistance exercise in a particular menstrual cycle phase. KEY POINTS: It has been hypothesised that the follicular (peak oestrogen) vs. the luteal (peak progesterone) phase of the menstrual cycle is more advantageous for skeletal muscle anabolism in response to resistance exercise. Using best practice methods to assess menstrual cycle status, we measured integrated (over 6 days) muscle protein synthesis (MPS) and myofibrillar protein breakdown (MPB) following resistance exercise in females (n = 12) in their follicular and luteal phases. We observed the expected differences in oestrogen and progesterone concentrations that confirmed our participants' menstrual cycle phase; however, there were no notable metabolic pathway differences, as measured using metabolomics, between cycle phases. We observed that resistance exercise stimulated MPS, but there was no effect of menstrual cycle phase on either resting or exercise-stimulated MPS or MPB. Our data show no greater anabolic effect of resistance exercise in the follicular vs. the luteal phase of the menstrual cycle.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Menstrual cycle phase does not influence muscle protein synthesis or whole-body myofibrillar proteolysis in response to resistance exercise.\",\"authors\":\"Lauren M Colenso-Semple, James McKendry, Changhyun Lim, Philip J Atherton, Daniel J Wilkinson, K Smith, Stuart M Phillips\",\"doi\":\"10.1113/JP287342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has been hypothesised that skeletal muscle protein turnover is affected by menstrual cycle phase with a more anabolic environment during the follicular vs. the luteal phase. We assessed the influence of menstrual cycle phase on muscle protein synthesis and myofibrillar protein breakdown in response to 6 days of controlled resistance exercise in young females during peak oestrogen and peak progesterone, using stable isotopes, unbiased metabolomics and muscle biopsies. We used comprehensive menstrual cycle phase-detection methods, including cycle tracking, blood samples and urinary test kits, to classify menstrual phases. Participants (n = 12) completed two 6 day study phases in a randomised order: late follicular phase and mid-luteal phase. Participants performed unilateral resistance exercise in each menstrual cycle phase, exercising the contralateral leg in each phase in a counterbalanced manner. Follicular phase myofibrillar protein synthesis (MPS) rates were 1.33 ± 0.27% h<sup>-1</sup> in the control leg and 1.52 ± 0.27% h<sup>-1</sup> in the exercise leg. Luteal phase MPS was 1.28 ± 0.27% h<sup>-1</sup> in the control leg and 1.46 ± 0.25% h<sup>-1</sup> in the exercise leg. We observed a significant effect of exercise (P < 0.001) but no effect of cycle phase or interaction. There was no significant effect of menstrual cycle phase on whole-body myofibrillar protein breakdown (P = 0.24). Using unbiased metabolomics, we observed no notable phase-specific changes in circulating blood metabolites associated with any particular menstrual cycle phase. Fluctuations in endogenous ovarian hormones influenced neither MPS, nor MPB in response to resistance exercise. Skeletal muscle is not more anabolically responsive to resistance exercise in a particular menstrual cycle phase. KEY POINTS: It has been hypothesised that the follicular (peak oestrogen) vs. the luteal (peak progesterone) phase of the menstrual cycle is more advantageous for skeletal muscle anabolism in response to resistance exercise. Using best practice methods to assess menstrual cycle status, we measured integrated (over 6 days) muscle protein synthesis (MPS) and myofibrillar protein breakdown (MPB) following resistance exercise in females (n = 12) in their follicular and luteal phases. We observed the expected differences in oestrogen and progesterone concentrations that confirmed our participants' menstrual cycle phase; however, there were no notable metabolic pathway differences, as measured using metabolomics, between cycle phases. We observed that resistance exercise stimulated MPS, but there was no effect of menstrual cycle phase on either resting or exercise-stimulated MPS or MPB. Our data show no greater anabolic effect of resistance exercise in the follicular vs. the luteal phase of the menstrual cycle.</p>\",\"PeriodicalId\":50088,\"journal\":{\"name\":\"Journal of Physiology-London\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-London\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/JP287342\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP287342","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

据推测,骨骼肌蛋白周转受月经周期阶段的影响,卵泡期和黄体期的合成代谢环境更强。我们利用稳定同位素、无偏代谢组学和肌肉活组织检查,评估了年轻女性在雌激素和孕激素峰值期间进行为期6天的控制阻力运动后,月经周期阶段对肌肉蛋白合成和肌纤维蛋白分解的影响。我们采用全面的月经周期阶段检测方法,包括周期跟踪、血样和尿液检测试剂盒,对月经阶段进行分类。参与者(n = 12)按随机顺序完成了两个为期6天的研究阶段:卵泡晚期和黄体中期。参与者在每个月经周期阶段进行单侧阻力运动,在每个阶段以平衡的方式锻炼对侧腿。卵泡期肌纤维蛋白合成(MPS)率,对照组为1.33±0.27% h-1,运动组为1.52±0.27% h-1。对照组黄体期MPS为1.28±0.27% h-1,运动组为1.46±0.25% h-1。我们观察到运动的显著效果(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Menstrual cycle phase does not influence muscle protein synthesis or whole-body myofibrillar proteolysis in response to resistance exercise.

It has been hypothesised that skeletal muscle protein turnover is affected by menstrual cycle phase with a more anabolic environment during the follicular vs. the luteal phase. We assessed the influence of menstrual cycle phase on muscle protein synthesis and myofibrillar protein breakdown in response to 6 days of controlled resistance exercise in young females during peak oestrogen and peak progesterone, using stable isotopes, unbiased metabolomics and muscle biopsies. We used comprehensive menstrual cycle phase-detection methods, including cycle tracking, blood samples and urinary test kits, to classify menstrual phases. Participants (n = 12) completed two 6 day study phases in a randomised order: late follicular phase and mid-luteal phase. Participants performed unilateral resistance exercise in each menstrual cycle phase, exercising the contralateral leg in each phase in a counterbalanced manner. Follicular phase myofibrillar protein synthesis (MPS) rates were 1.33 ± 0.27% h-1 in the control leg and 1.52 ± 0.27% h-1 in the exercise leg. Luteal phase MPS was 1.28 ± 0.27% h-1 in the control leg and 1.46 ± 0.25% h-1 in the exercise leg. We observed a significant effect of exercise (P < 0.001) but no effect of cycle phase or interaction. There was no significant effect of menstrual cycle phase on whole-body myofibrillar protein breakdown (P = 0.24). Using unbiased metabolomics, we observed no notable phase-specific changes in circulating blood metabolites associated with any particular menstrual cycle phase. Fluctuations in endogenous ovarian hormones influenced neither MPS, nor MPB in response to resistance exercise. Skeletal muscle is not more anabolically responsive to resistance exercise in a particular menstrual cycle phase. KEY POINTS: It has been hypothesised that the follicular (peak oestrogen) vs. the luteal (peak progesterone) phase of the menstrual cycle is more advantageous for skeletal muscle anabolism in response to resistance exercise. Using best practice methods to assess menstrual cycle status, we measured integrated (over 6 days) muscle protein synthesis (MPS) and myofibrillar protein breakdown (MPB) following resistance exercise in females (n = 12) in their follicular and luteal phases. We observed the expected differences in oestrogen and progesterone concentrations that confirmed our participants' menstrual cycle phase; however, there were no notable metabolic pathway differences, as measured using metabolomics, between cycle phases. We observed that resistance exercise stimulated MPS, but there was no effect of menstrual cycle phase on either resting or exercise-stimulated MPS or MPB. Our data show no greater anabolic effect of resistance exercise in the follicular vs. the luteal phase of the menstrual cycle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physiology-London
Journal of Physiology-London 医学-神经科学
CiteScore
9.70
自引率
7.30%
发文量
817
审稿时长
2 months
期刊介绍: The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew. The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信