逆转录病毒CRISPR/ cas9介导的基因靶向Th17体外分化研究

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Zejin Cui, Pengkun Yuan, Zhishan Zhao, Fan Zhao, Linrong Lu
{"title":"逆转录病毒CRISPR/ cas9介导的基因靶向Th17体外分化研究","authors":"Zejin Cui, Pengkun Yuan, Zhishan Zhao, Fan Zhao, Linrong Lu","doi":"10.3791/66966","DOIUrl":null,"url":null,"abstract":"<p><p>T helper cells that produce IL-17A, known as Th17 cells, play a critical role in immune defense and are implicated in autoimmune disorders. CD4 T cells can be stimulated with antigens and well-defined cytokine cocktails in vitro to mimic Th17 cell differentiation in vivo. Research has been conducted extensively on the Th17 differentiation regulation mechanisms using the in vitro Th17 polarization assay. Conventional Th17 polarization methods typically involve obtaining naïve CD4 T cells from genetically modified mice to study the effects of specific genes on Th17 differentiation and function. These methods can be time-consuming and costly and may be influenced by cell-extrinsic factors from the knockout animals. Thus, a protocol using retroviral transduction of guide RNA to introduce gene knockout in CRISPR/Cas9 knockin primary mouse T cells serves as a very useful alternative approach. This paper presents a protocol to differentiate naïve primary T cells into Th17 cells following retroviral-mediated gene targeting, as well as the subsequent flow cytometry analysis methods for assaying infection and differentiation efficiency.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retroviral CRISPR/Cas9-Mediated Gene Targeting for the Study of Th17 Differentiation in Vitro.\",\"authors\":\"Zejin Cui, Pengkun Yuan, Zhishan Zhao, Fan Zhao, Linrong Lu\",\"doi\":\"10.3791/66966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>T helper cells that produce IL-17A, known as Th17 cells, play a critical role in immune defense and are implicated in autoimmune disorders. CD4 T cells can be stimulated with antigens and well-defined cytokine cocktails in vitro to mimic Th17 cell differentiation in vivo. Research has been conducted extensively on the Th17 differentiation regulation mechanisms using the in vitro Th17 polarization assay. Conventional Th17 polarization methods typically involve obtaining naïve CD4 T cells from genetically modified mice to study the effects of specific genes on Th17 differentiation and function. These methods can be time-consuming and costly and may be influenced by cell-extrinsic factors from the knockout animals. Thus, a protocol using retroviral transduction of guide RNA to introduce gene knockout in CRISPR/Cas9 knockin primary mouse T cells serves as a very useful alternative approach. This paper presents a protocol to differentiate naïve primary T cells into Th17 cells following retroviral-mediated gene targeting, as well as the subsequent flow cytometry analysis methods for assaying infection and differentiation efficiency.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 213\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/66966\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/66966","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

产生IL-17A的T辅助细胞,即Th17细胞,在免疫防御中起关键作用,并与自身免疫性疾病有关。CD4 T细胞可以在体外用抗原和定义明确的细胞因子鸡尾酒刺激来模拟体内Th17细胞的分化。利用体外Th17极化实验对Th17分化调控机制进行了广泛的研究。传统的Th17极化方法通常涉及从转基因小鼠中获得naïve CD4 T细胞,以研究特定基因对Th17分化和功能的影响。这些方法既耗时又昂贵,而且可能受到敲除动物的细胞外部因素的影响。因此,利用逆转录病毒转导向导RNA在CRISPR/Cas9敲入原代小鼠T细胞中引入基因敲除是一种非常有用的替代方法。本文提出了一种逆转录病毒介导的基因靶向将naïve原代T细胞分化为Th17细胞的方案,以及随后检测感染和分化效率的流式细胞术分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retroviral CRISPR/Cas9-Mediated Gene Targeting for the Study of Th17 Differentiation in Vitro.

T helper cells that produce IL-17A, known as Th17 cells, play a critical role in immune defense and are implicated in autoimmune disorders. CD4 T cells can be stimulated with antigens and well-defined cytokine cocktails in vitro to mimic Th17 cell differentiation in vivo. Research has been conducted extensively on the Th17 differentiation regulation mechanisms using the in vitro Th17 polarization assay. Conventional Th17 polarization methods typically involve obtaining naïve CD4 T cells from genetically modified mice to study the effects of specific genes on Th17 differentiation and function. These methods can be time-consuming and costly and may be influenced by cell-extrinsic factors from the knockout animals. Thus, a protocol using retroviral transduction of guide RNA to introduce gene knockout in CRISPR/Cas9 knockin primary mouse T cells serves as a very useful alternative approach. This paper presents a protocol to differentiate naïve primary T cells into Th17 cells following retroviral-mediated gene targeting, as well as the subsequent flow cytometry analysis methods for assaying infection and differentiation efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信