Chen Ranran, Lei Jinming, Liao Yujie, Jin Yiping, Wang Xue, Li Hong, Bi Yanlong, Zhu Haohao
{"title":"预测24小时眼压变化的机器学习模型:比较研究。","authors":"Chen Ranran, Lei Jinming, Liao Yujie, Jin Yiping, Wang Xue, Li Hong, Bi Yanlong, Zhu Haohao","doi":"10.12659/MSM.945483","DOIUrl":null,"url":null,"abstract":"<p><p>BACKGROUND Predicting 24-hour intraocular pressure (IOP) fluctuations is crucial for enhancing glaucoma management. Traditional methods of measuring 24-hour IOP fluctuations are complex and present certain limitations. The present study leverages machine learning techniques to forecast 24-hour IOP fluctuations based on daytime IOP measurements. MATERIAL AND METHODS A binary method was used to classify 24-hour IOP fluctuations as either >8 mmHg or £8 mmHg. Data were collected from 24-hour IOP monitoring, including 22 different features. Feature selection involved the chi-square test and point-biserial correlation, leading to the establishment of 4 subsets with significance levels of P<1, P<0.1, P<0.05, and P<0.025. Five binary classification machine learning algorithms were used to construct the model. Model performance was assessed by comparing accuracy, specificity, 10-fold cross-validation, precision, sensitivity, F1 score, area under the curve (AUC), and Area Under the Precision-Recall Curve (AUCPR). The model with the highest performance was selected, and feature importance was assessed using Shapley additive explanations. RESULTS In the subset of features where P<0.05, all models performed better than those in the other subsets, with XGBoost standing out the most. The XGBoost algorithm achieved an accuracy of 0.886, a specificity of 0.972, a 10-fold cross-validation of 0.872, a precision of 0.857, a sensitivity of 0.585, and an F1 score of 0.696. Additionally, it obtained an AUC of 0.890 and an AUCPR of 0.794. CONCLUSIONS Our study illustrates the predictive capabilities of machine learning algorithms in forecasting 24-hour IOP fluctuations. The exceptional performance of the XGBoost algorithm in predicting IOP fluctuations underscores its significance for future research and clinical applications.</p>","PeriodicalId":48888,"journal":{"name":"Medical Science Monitor","volume":"30 ","pages":"e945483"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11624606/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Models for Predicting 24-Hour Intraocular Pressure Changes: A Comparative Study.\",\"authors\":\"Chen Ranran, Lei Jinming, Liao Yujie, Jin Yiping, Wang Xue, Li Hong, Bi Yanlong, Zhu Haohao\",\"doi\":\"10.12659/MSM.945483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BACKGROUND Predicting 24-hour intraocular pressure (IOP) fluctuations is crucial for enhancing glaucoma management. Traditional methods of measuring 24-hour IOP fluctuations are complex and present certain limitations. The present study leverages machine learning techniques to forecast 24-hour IOP fluctuations based on daytime IOP measurements. MATERIAL AND METHODS A binary method was used to classify 24-hour IOP fluctuations as either >8 mmHg or £8 mmHg. Data were collected from 24-hour IOP monitoring, including 22 different features. Feature selection involved the chi-square test and point-biserial correlation, leading to the establishment of 4 subsets with significance levels of P<1, P<0.1, P<0.05, and P<0.025. Five binary classification machine learning algorithms were used to construct the model. Model performance was assessed by comparing accuracy, specificity, 10-fold cross-validation, precision, sensitivity, F1 score, area under the curve (AUC), and Area Under the Precision-Recall Curve (AUCPR). The model with the highest performance was selected, and feature importance was assessed using Shapley additive explanations. RESULTS In the subset of features where P<0.05, all models performed better than those in the other subsets, with XGBoost standing out the most. The XGBoost algorithm achieved an accuracy of 0.886, a specificity of 0.972, a 10-fold cross-validation of 0.872, a precision of 0.857, a sensitivity of 0.585, and an F1 score of 0.696. Additionally, it obtained an AUC of 0.890 and an AUCPR of 0.794. CONCLUSIONS Our study illustrates the predictive capabilities of machine learning algorithms in forecasting 24-hour IOP fluctuations. The exceptional performance of the XGBoost algorithm in predicting IOP fluctuations underscores its significance for future research and clinical applications.</p>\",\"PeriodicalId\":48888,\"journal\":{\"name\":\"Medical Science Monitor\",\"volume\":\"30 \",\"pages\":\"e945483\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11624606/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Science Monitor\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12659/MSM.945483\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Science Monitor","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12659/MSM.945483","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Machine Learning Models for Predicting 24-Hour Intraocular Pressure Changes: A Comparative Study.
BACKGROUND Predicting 24-hour intraocular pressure (IOP) fluctuations is crucial for enhancing glaucoma management. Traditional methods of measuring 24-hour IOP fluctuations are complex and present certain limitations. The present study leverages machine learning techniques to forecast 24-hour IOP fluctuations based on daytime IOP measurements. MATERIAL AND METHODS A binary method was used to classify 24-hour IOP fluctuations as either >8 mmHg or £8 mmHg. Data were collected from 24-hour IOP monitoring, including 22 different features. Feature selection involved the chi-square test and point-biserial correlation, leading to the establishment of 4 subsets with significance levels of P<1, P<0.1, P<0.05, and P<0.025. Five binary classification machine learning algorithms were used to construct the model. Model performance was assessed by comparing accuracy, specificity, 10-fold cross-validation, precision, sensitivity, F1 score, area under the curve (AUC), and Area Under the Precision-Recall Curve (AUCPR). The model with the highest performance was selected, and feature importance was assessed using Shapley additive explanations. RESULTS In the subset of features where P<0.05, all models performed better than those in the other subsets, with XGBoost standing out the most. The XGBoost algorithm achieved an accuracy of 0.886, a specificity of 0.972, a 10-fold cross-validation of 0.872, a precision of 0.857, a sensitivity of 0.585, and an F1 score of 0.696. Additionally, it obtained an AUC of 0.890 and an AUCPR of 0.794. CONCLUSIONS Our study illustrates the predictive capabilities of machine learning algorithms in forecasting 24-hour IOP fluctuations. The exceptional performance of the XGBoost algorithm in predicting IOP fluctuations underscores its significance for future research and clinical applications.
期刊介绍:
Medical Science Monitor (MSM) established in 1995 is an international, peer-reviewed scientific journal which publishes original articles in Clinical Medicine and related disciplines such as Epidemiology and Population Studies, Product Investigations, Development of Laboratory Techniques :: Diagnostics and Medical Technology which enable presentation of research or review works in overlapping areas of medicine and technology such us (but not limited to): medical diagnostics, medical imaging systems, computer simulation of health and disease processes, new medical devices, etc. Reviews and Special Reports - papers may be accepted on the basis that they provide a systematic, critical and up-to-date overview of literature pertaining to research or clinical topics. Meta-analyses are considered as reviews. A special attention will be paid to a teaching value of a review paper.
Medical Science Monitor is internationally indexed in Thomson-Reuters Web of Science, Journals Citation Report (JCR), Science Citation Index Expanded (SCI), Index Medicus MEDLINE, PubMed, PMC, EMBASE/Excerpta Medica, Chemical Abstracts CAS and Index Copernicus.