不同碳源下黑热菌K1生长特性、氧化还原电位变化及质子动力产生

IF 2.7 Q3 MICROBIOLOGY
AIMS Microbiology Pub Date : 2024-11-22 eCollection Date: 2024-01-01 DOI:10.3934/microbiol.2024045
Hripsime Petrosyan, Karen Trchounian
{"title":"不同碳源下黑热菌K1生长特性、氧化还原电位变化及质子动力产生","authors":"Hripsime Petrosyan, Karen Trchounian","doi":"10.3934/microbiol.2024045","DOIUrl":null,"url":null,"abstract":"<p><p>The extremophile microorganism <i>Thermus scotoductus</i> primarily exhibits aerobic metabolism, though some strains are capable of anaerobic growth, utilizing diverse electron acceptors. We focused on the <i>T. scotoductus</i> K1 strain, exploring its aerobic growth and metabolism, responses to various carbon sources, and characterization of its bioenergetic and physiological properties. The strain grew on different carbon sources, depending on their concentration and the medium's pH, demonstrating adaptability to acidic environments (pH 6.0). It was shown that 4 g L<sup>-1</sup> glucose inhibited the specific growth rate by approximately 4.8-fold and 5.6-fold compared to 1 g L<sup>-1</sup> glucose at pH 8.5 and pH 6.0, respectively. However, this inhibition was not observed in the presence of fructose, galactose, lactose, and starch. Extracellular and intracellular pH variations were mainly alkalifying during growth. At pH 6.0, the membrane potential (ΔΨ) was lower for all carbon sources compared to pH 8.5. The proton motive force (Δp) was lower only during growth on lactose due to the difference in the transmembrane proton gradient (ΔpH). Moreover, at pH 6.0 during growth on lactose, a positive Δp was detected, indicating the cells' ability to employ a unique energy-conserving strategy. Taken together, these findings concluded that <i>Thermus scotoductus</i> K1 exhibits different growth and bioenergetic properties depending on the carbon source, which can be useful for biotechnological applications. These findings offer valuable insights into how bacterial cells function under high-temperature conditions, which is essential for applying bioenergetics knowledge in future biotechnological advancements.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 4","pages":"1052-1067"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609421/pdf/","citationCount":"0","resultStr":"{\"title\":\"Growth characteristics, redox potential changes and proton motive force generation in <i>Thermus scotoductus</i> K1 during growth on various carbon sources.\",\"authors\":\"Hripsime Petrosyan, Karen Trchounian\",\"doi\":\"10.3934/microbiol.2024045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The extremophile microorganism <i>Thermus scotoductus</i> primarily exhibits aerobic metabolism, though some strains are capable of anaerobic growth, utilizing diverse electron acceptors. We focused on the <i>T. scotoductus</i> K1 strain, exploring its aerobic growth and metabolism, responses to various carbon sources, and characterization of its bioenergetic and physiological properties. The strain grew on different carbon sources, depending on their concentration and the medium's pH, demonstrating adaptability to acidic environments (pH 6.0). It was shown that 4 g L<sup>-1</sup> glucose inhibited the specific growth rate by approximately 4.8-fold and 5.6-fold compared to 1 g L<sup>-1</sup> glucose at pH 8.5 and pH 6.0, respectively. However, this inhibition was not observed in the presence of fructose, galactose, lactose, and starch. Extracellular and intracellular pH variations were mainly alkalifying during growth. At pH 6.0, the membrane potential (ΔΨ) was lower for all carbon sources compared to pH 8.5. The proton motive force (Δp) was lower only during growth on lactose due to the difference in the transmembrane proton gradient (ΔpH). Moreover, at pH 6.0 during growth on lactose, a positive Δp was detected, indicating the cells' ability to employ a unique energy-conserving strategy. Taken together, these findings concluded that <i>Thermus scotoductus</i> K1 exhibits different growth and bioenergetic properties depending on the carbon source, which can be useful for biotechnological applications. These findings offer valuable insights into how bacterial cells function under high-temperature conditions, which is essential for applying bioenergetics knowledge in future biotechnological advancements.</p>\",\"PeriodicalId\":46108,\"journal\":{\"name\":\"AIMS Microbiology\",\"volume\":\"10 4\",\"pages\":\"1052-1067\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609421/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/microbiol.2024045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/microbiol.2024045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

嗜极微生物热菌(Thermus scotoductus)主要表现为有氧代谢,尽管一些菌株能够厌氧生长,利用不同的电子受体。本研究以T. scotoductus K1菌株为研究对象,探讨其有氧生长和代谢、对不同碳源的响应以及其生物能量和生理特性。菌株生长在不同的碳源上,取决于它们的浓度和培养基的pH,表现出对酸性环境(pH 6.0)的适应性。结果表明,与1 g L-1葡萄糖相比,4 g L-1葡萄糖在pH 8.5和pH 6.0条件下对特定生长速率的抑制作用分别约为4.8倍和5.6倍。然而,在果糖、半乳糖、乳糖和淀粉存在的情况下,没有观察到这种抑制作用。细胞外和细胞内的pH变化在生长过程中以碱化为主。在pH 6.0时,所有碳源的膜电位(ΔΨ)都低于pH 8.5。由于跨膜质子梯度的差异,质子动力(Δp)仅在乳糖上生长时较低(ΔpH)。此外,在乳糖生长的pH为6.0时,检测到Δp阳性,表明细胞有能力采用独特的节能策略。综上所述,这些发现表明,根据碳源的不同,热菌K1表现出不同的生长和生物能量特性,这对生物技术应用是有用的。这些发现为了解细菌细胞在高温条件下的功能提供了有价值的见解,这对于在未来生物技术进步中应用生物能量学知识至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growth characteristics, redox potential changes and proton motive force generation in Thermus scotoductus K1 during growth on various carbon sources.

The extremophile microorganism Thermus scotoductus primarily exhibits aerobic metabolism, though some strains are capable of anaerobic growth, utilizing diverse electron acceptors. We focused on the T. scotoductus K1 strain, exploring its aerobic growth and metabolism, responses to various carbon sources, and characterization of its bioenergetic and physiological properties. The strain grew on different carbon sources, depending on their concentration and the medium's pH, demonstrating adaptability to acidic environments (pH 6.0). It was shown that 4 g L-1 glucose inhibited the specific growth rate by approximately 4.8-fold and 5.6-fold compared to 1 g L-1 glucose at pH 8.5 and pH 6.0, respectively. However, this inhibition was not observed in the presence of fructose, galactose, lactose, and starch. Extracellular and intracellular pH variations were mainly alkalifying during growth. At pH 6.0, the membrane potential (ΔΨ) was lower for all carbon sources compared to pH 8.5. The proton motive force (Δp) was lower only during growth on lactose due to the difference in the transmembrane proton gradient (ΔpH). Moreover, at pH 6.0 during growth on lactose, a positive Δp was detected, indicating the cells' ability to employ a unique energy-conserving strategy. Taken together, these findings concluded that Thermus scotoductus K1 exhibits different growth and bioenergetic properties depending on the carbon source, which can be useful for biotechnological applications. These findings offer valuable insights into how bacterial cells function under high-temperature conditions, which is essential for applying bioenergetics knowledge in future biotechnological advancements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Microbiology
AIMS Microbiology MICROBIOLOGY-
CiteScore
7.00
自引率
2.10%
发文量
22
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信