利用IOBR 2.0对肿瘤微环境进行多维解码,增强免疫肿瘤学研究。

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2024-12-16 Epub Date: 2024-12-02 DOI:10.1016/j.crmeth.2024.100910
Dongqiang Zeng, Yiran Fang, Wenjun Qiu, Peng Luo, Shixiang Wang, Rongfang Shen, Wenchao Gu, Xiatong Huang, Qianqian Mao, Gaofeng Wang, Yonghong Lai, Guangda Rong, Xi Xu, Min Shi, Zuqiang Wu, Guangchuang Yu, Wangjun Liao
{"title":"利用IOBR 2.0对肿瘤微环境进行多维解码,增强免疫肿瘤学研究。","authors":"Dongqiang Zeng, Yiran Fang, Wenjun Qiu, Peng Luo, Shixiang Wang, Rongfang Shen, Wenchao Gu, Xiatong Huang, Qianqian Mao, Gaofeng Wang, Yonghong Lai, Guangda Rong, Xi Xu, Min Shi, Zuqiang Wu, Guangchuang Yu, Wangjun Liao","doi":"10.1016/j.crmeth.2024.100910","DOIUrl":null,"url":null,"abstract":"<p><p>The use of large transcriptome datasets has greatly improved our understanding of the tumor microenvironment (TME) and helped develop precise immunotherapies. The growing application of multi-omics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptome sequencing has led to many new insights, yet these findings still require clinical validation in large cohorts. To advance multi-omics integration in TME research, we have upgraded the Immuno-Oncology Biological Research (IOBR) package to IOBR 2.0, restructuring and standardizing its analytical workflow. IOBR 2.0 offers six modules for TME analysis based on multi-omics data, including data preprocessing, TME estimation, TME infiltration pattern identification, cellular interaction analysis, genome and TME interaction, and feature visualization, as well as modeling. Additionally, IOBR 2.0 enables constructing gene signatures and reference matrices from scRNA-seq data for TME deconvolution. The user-friendly pipeline provides comprehensive insights into tumor-immune interactions, and a detailed GitBook(https://iobr.github.io/book/) offers a complete manual and analysis guide for each module.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100910"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704618/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0.\",\"authors\":\"Dongqiang Zeng, Yiran Fang, Wenjun Qiu, Peng Luo, Shixiang Wang, Rongfang Shen, Wenchao Gu, Xiatong Huang, Qianqian Mao, Gaofeng Wang, Yonghong Lai, Guangda Rong, Xi Xu, Min Shi, Zuqiang Wu, Guangchuang Yu, Wangjun Liao\",\"doi\":\"10.1016/j.crmeth.2024.100910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of large transcriptome datasets has greatly improved our understanding of the tumor microenvironment (TME) and helped develop precise immunotherapies. The growing application of multi-omics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptome sequencing has led to many new insights, yet these findings still require clinical validation in large cohorts. To advance multi-omics integration in TME research, we have upgraded the Immuno-Oncology Biological Research (IOBR) package to IOBR 2.0, restructuring and standardizing its analytical workflow. IOBR 2.0 offers six modules for TME analysis based on multi-omics data, including data preprocessing, TME estimation, TME infiltration pattern identification, cellular interaction analysis, genome and TME interaction, and feature visualization, as well as modeling. Additionally, IOBR 2.0 enables constructing gene signatures and reference matrices from scRNA-seq data for TME deconvolution. The user-friendly pipeline provides comprehensive insights into tumor-immune interactions, and a detailed GitBook(https://iobr.github.io/book/) offers a complete manual and analysis guide for each module.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"100910\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704618/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2024.100910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

大型转录组数据集的使用极大地提高了我们对肿瘤微环境(TME)的理解,并有助于开发精确的免疫疗法。随着多组学、单细胞RNA测序(scRNA-seq)和空间转录组测序的应用越来越广泛,这些发现带来了许多新的见解,但这些发现仍需要在大型队列中进行临床验证。为了推进多组学在TME研究中的整合,我们将免疫肿瘤生物学研究(IOBR)包升级到IOBR 2.0,重组和标准化了其分析工作流程。IOBR 2.0为基于多组学数据的TME分析提供了6个模块,包括数据预处理、TME估计、TME浸润模式识别、细胞相互作用分析、基因组与TME相互作用、特征可视化和建模。此外,IOBR 2.0可以从scRNA-seq数据中构建基因签名和参考矩阵,用于TME反卷积。用户友好的管道提供了对肿瘤免疫相互作用的全面见解,详细的GitBook(https://iobr.github.io/book/)为每个模块提供了完整的手册和分析指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0.

The use of large transcriptome datasets has greatly improved our understanding of the tumor microenvironment (TME) and helped develop precise immunotherapies. The growing application of multi-omics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptome sequencing has led to many new insights, yet these findings still require clinical validation in large cohorts. To advance multi-omics integration in TME research, we have upgraded the Immuno-Oncology Biological Research (IOBR) package to IOBR 2.0, restructuring and standardizing its analytical workflow. IOBR 2.0 offers six modules for TME analysis based on multi-omics data, including data preprocessing, TME estimation, TME infiltration pattern identification, cellular interaction analysis, genome and TME interaction, and feature visualization, as well as modeling. Additionally, IOBR 2.0 enables constructing gene signatures and reference matrices from scRNA-seq data for TME deconvolution. The user-friendly pipeline provides comprehensive insights into tumor-immune interactions, and a detailed GitBook(https://iobr.github.io/book/) offers a complete manual and analysis guide for each module.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信