一种预测膀胱癌预后和治疗反应的新型间充质干细胞相关特征的鉴定。

IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING
Stem Cells International Pub Date : 2024-11-15 eCollection Date: 2024-01-01 DOI:10.1155/sci/6064671
Enguang Yang, Luhua Ji, Xinyu Zhang, Suoshi Jing, Pan Li, Hanzhang Wang, Luyang Zhang, Yuanfeng Zhang, Li Yang, Junqiang Tian, Zhiping Wang
{"title":"一种预测膀胱癌预后和治疗反应的新型间充质干细胞相关特征的鉴定。","authors":"Enguang Yang, Luhua Ji, Xinyu Zhang, Suoshi Jing, Pan Li, Hanzhang Wang, Luyang Zhang, Yuanfeng Zhang, Li Yang, Junqiang Tian, Zhiping Wang","doi":"10.1155/sci/6064671","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Mesenchymal stem cells (MSCs) have been identified to have a unique migratory pattern toward tumor sites across diverse cancer types, playing a crucial role in cancer progression, treatment resistance, and immunosuppression. This study aims to formulate a prognostic model focused on MSC-associated markers to efficiently predict the clinical outcomes and responses to therapy in individuals with bladder cancer (BC). <b>Methods:</b> Clinical and transcriptome profiling data were extracted from The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA) and GSE31684 databases. Systematic quantification of MSC prevalences and stromal indices was undertaken, culminating in the discernment of genes correlated with stromal MSCs following a thorough application of weighted gene coexpression network analysis techniques. Subsequently, an exhaustive risk signature pertinent to MSC was formulated by amalgamating methods from univariate and Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression models. Drugs targeting genes associated with MSCs were screened using molecular docking. <b>Results:</b> The prognostic model for MSC incorporated five critical genes: ZNF165, matrix remodeling-associated 7 (MXRA7), CEMIP, ADP-ribosylation factor-like 4C (ARL4C), and cerebral endothelial cell adhesion molecule (CERCAM). In the case of BC patients, stratification was performed into discrete risk categories, utilizing the median MSC risk score as a criterion. It was striking that those classified within the high-MSC-risk bracket demonstrated correlations with unfavorable prognostic implications. Enhanced responsiveness to immunotherapy in low-MSC-risk patients was delineated compared to their high-MSC-risk counterparts. A heightened receptivity was noted toward particular chemotherapy drugs, encompassing gemcitabine, vincristine, paclitaxel, gefitinib, and sorafenib, within this high-risk group. Conversely, a superior reaction to cisplatin was distinctly evident among those marked by low MSC scores. The results of molecular docking demonstrated that kaempferol exhibited favorable docking with ZNF165, quercetin exhibited favorable docking with MXRA7, mairin exhibited favorable docking with CEMIP, and limonin diosphenol exhibited favorable docking with ARL4C. <b>Conclusions:</b> The five-gene MSC prognostic model demonstrates substantial efficacy in prognosticating clinical outcomes and gauging responsiveness to chemotherapy and immunotherapy regimens. The genes ZNF165, MXRA7, CEMIP, ARL4C, and CERCAM are underscored as promising candidates warranting further exploration for anti-MSC therapeutic strategies, thereby offering novel insights for personalized treatment approaches in BC.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2024 ","pages":"6064671"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611448/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of a Novel Mesenchymal Stem Cell-Related Signature for Predicting the Prognosis and Therapeutic Responses of Bladder Cancer.\",\"authors\":\"Enguang Yang, Luhua Ji, Xinyu Zhang, Suoshi Jing, Pan Li, Hanzhang Wang, Luyang Zhang, Yuanfeng Zhang, Li Yang, Junqiang Tian, Zhiping Wang\",\"doi\":\"10.1155/sci/6064671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Mesenchymal stem cells (MSCs) have been identified to have a unique migratory pattern toward tumor sites across diverse cancer types, playing a crucial role in cancer progression, treatment resistance, and immunosuppression. This study aims to formulate a prognostic model focused on MSC-associated markers to efficiently predict the clinical outcomes and responses to therapy in individuals with bladder cancer (BC). <b>Methods:</b> Clinical and transcriptome profiling data were extracted from The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA) and GSE31684 databases. Systematic quantification of MSC prevalences and stromal indices was undertaken, culminating in the discernment of genes correlated with stromal MSCs following a thorough application of weighted gene coexpression network analysis techniques. Subsequently, an exhaustive risk signature pertinent to MSC was formulated by amalgamating methods from univariate and Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression models. Drugs targeting genes associated with MSCs were screened using molecular docking. <b>Results:</b> The prognostic model for MSC incorporated five critical genes: ZNF165, matrix remodeling-associated 7 (MXRA7), CEMIP, ADP-ribosylation factor-like 4C (ARL4C), and cerebral endothelial cell adhesion molecule (CERCAM). In the case of BC patients, stratification was performed into discrete risk categories, utilizing the median MSC risk score as a criterion. It was striking that those classified within the high-MSC-risk bracket demonstrated correlations with unfavorable prognostic implications. Enhanced responsiveness to immunotherapy in low-MSC-risk patients was delineated compared to their high-MSC-risk counterparts. A heightened receptivity was noted toward particular chemotherapy drugs, encompassing gemcitabine, vincristine, paclitaxel, gefitinib, and sorafenib, within this high-risk group. Conversely, a superior reaction to cisplatin was distinctly evident among those marked by low MSC scores. The results of molecular docking demonstrated that kaempferol exhibited favorable docking with ZNF165, quercetin exhibited favorable docking with MXRA7, mairin exhibited favorable docking with CEMIP, and limonin diosphenol exhibited favorable docking with ARL4C. <b>Conclusions:</b> The five-gene MSC prognostic model demonstrates substantial efficacy in prognosticating clinical outcomes and gauging responsiveness to chemotherapy and immunotherapy regimens. The genes ZNF165, MXRA7, CEMIP, ARL4C, and CERCAM are underscored as promising candidates warranting further exploration for anti-MSC therapeutic strategies, thereby offering novel insights for personalized treatment approaches in BC.</p>\",\"PeriodicalId\":21962,\"journal\":{\"name\":\"Stem Cells International\",\"volume\":\"2024 \",\"pages\":\"6064671\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611448/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cells International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/sci/6064671\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/sci/6064671","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

背景:间充质干细胞(MSCs)在不同类型的癌症中具有独特的向肿瘤部位迁移的模式,在癌症进展、治疗耐药性和免疫抑制中起着至关重要的作用。本研究旨在建立一个以msc相关标志物为中心的预后模型,以有效预测膀胱癌(BC)患者的临床结果和治疗反应。方法:从The Cancer Genome Atlas Urothelial膀胱癌(TCGA-BLCA)和GSE31684数据库中提取临床和转录组分析数据。对MSC患病率和基质指数进行了系统的量化,最终在加权基因共表达网络分析技术的全面应用后,识别出与基质MSC相关的基因。随后,通过合并单变量和最小绝对收缩和选择算子(LASSO) Cox回归模型的方法,制定了与MSC相关的详尽风险签名。利用分子对接技术筛选靶向MSCs相关基因的药物。结果:MSC预后模型包含5个关键基因:ZNF165、基质重塑相关7 (MXRA7)、CEMIP、adp -核糖基化因子样4C (ARL4C)和脑内皮细胞粘附分子(CERCAM)。在BC患者的情况下,分层成离散的风险类别,利用中位MSC风险评分作为标准。令人惊讶的是,那些被归类为高msc风险范围的患者表现出与不良预后的相关性。与msc高风险患者相比,低风险患者对免疫治疗的反应性增强。高危人群对吉西他滨、长春新碱、紫杉醇、吉非替尼和索拉非尼等特定化疗药物的接受度较高。相反,在MSC评分较低的患者中,顺铂的反应明显较好。分子对接结果表明,山奈酚与ZNF165、槲皮素与MXRA7、mainin与CEMIP、柠檬素二酚与ARL4C均有良好的对接。结论:五基因间充质干细胞预后模型在预测临床结果和评估对化疗和免疫治疗方案的反应性方面显示出实质性的有效性。基因ZNF165、MXRA7、CEMIP、ARL4C和CERCAM被强调为有希望的候选基因,需要进一步探索抗msc治疗策略,从而为BC的个性化治疗方法提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of a Novel Mesenchymal Stem Cell-Related Signature for Predicting the Prognosis and Therapeutic Responses of Bladder Cancer.

Background: Mesenchymal stem cells (MSCs) have been identified to have a unique migratory pattern toward tumor sites across diverse cancer types, playing a crucial role in cancer progression, treatment resistance, and immunosuppression. This study aims to formulate a prognostic model focused on MSC-associated markers to efficiently predict the clinical outcomes and responses to therapy in individuals with bladder cancer (BC). Methods: Clinical and transcriptome profiling data were extracted from The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA) and GSE31684 databases. Systematic quantification of MSC prevalences and stromal indices was undertaken, culminating in the discernment of genes correlated with stromal MSCs following a thorough application of weighted gene coexpression network analysis techniques. Subsequently, an exhaustive risk signature pertinent to MSC was formulated by amalgamating methods from univariate and Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression models. Drugs targeting genes associated with MSCs were screened using molecular docking. Results: The prognostic model for MSC incorporated five critical genes: ZNF165, matrix remodeling-associated 7 (MXRA7), CEMIP, ADP-ribosylation factor-like 4C (ARL4C), and cerebral endothelial cell adhesion molecule (CERCAM). In the case of BC patients, stratification was performed into discrete risk categories, utilizing the median MSC risk score as a criterion. It was striking that those classified within the high-MSC-risk bracket demonstrated correlations with unfavorable prognostic implications. Enhanced responsiveness to immunotherapy in low-MSC-risk patients was delineated compared to their high-MSC-risk counterparts. A heightened receptivity was noted toward particular chemotherapy drugs, encompassing gemcitabine, vincristine, paclitaxel, gefitinib, and sorafenib, within this high-risk group. Conversely, a superior reaction to cisplatin was distinctly evident among those marked by low MSC scores. The results of molecular docking demonstrated that kaempferol exhibited favorable docking with ZNF165, quercetin exhibited favorable docking with MXRA7, mairin exhibited favorable docking with CEMIP, and limonin diosphenol exhibited favorable docking with ARL4C. Conclusions: The five-gene MSC prognostic model demonstrates substantial efficacy in prognosticating clinical outcomes and gauging responsiveness to chemotherapy and immunotherapy regimens. The genes ZNF165, MXRA7, CEMIP, ARL4C, and CERCAM are underscored as promising candidates warranting further exploration for anti-MSC therapeutic strategies, thereby offering novel insights for personalized treatment approaches in BC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cells International
Stem Cells International CELL & TISSUE ENGINEERING-
CiteScore
8.10
自引率
2.30%
发文量
188
审稿时长
18 weeks
期刊介绍: Stem Cells International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies in all areas of stem cell biology and applications. The journal will consider basic, translational, and clinical research, including animal models and clinical trials. Topics covered include, but are not limited to: embryonic stem cells; induced pluripotent stem cells; tissue-specific stem cells; stem cell differentiation; genetics and epigenetics; cancer stem cells; stem cell technologies; ethical, legal, and social issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信