Roberta Piredda, Luis G Rodríguez Martínez, Konstantinos Stamatakis, Jorge Martinez-Ortega, Alejandro López Ferráz, José M Almendral, Yolanda Revilla
{"title":"多频电磁脉冲分子调制以优选根除致瘤细胞的评估。","authors":"Roberta Piredda, Luis G Rodríguez Martínez, Konstantinos Stamatakis, Jorge Martinez-Ortega, Alejandro López Ferráz, José M Almendral, Yolanda Revilla","doi":"10.1038/s41598-024-81171-x","DOIUrl":null,"url":null,"abstract":"<p><p>Physics methods of cancer therapy are extensively used in clinical practice, but they are invasive and often confront undesired side effects. A fully new equipment that allows sustained emission of intense and time-controlled non-ionizing multifrequency electromagnetic pulse (MEMP), has been applied to eukaryotic cells in culture. The equipment discriminates the overall electronegative charge of the cell cultures, and its subsequent proportional emission may thereby become higher and lethal to cancer cells of generally high metabolic activity. In contrast, low tumorigenic cells would be much less affected. We tested the specificity and efficacy of the equipment against a collection of (i) highly tumorigenic cells of human (glioblastoma, cervical carcinoma, and skin) and mouse (colon adenocarcinoma) origin; (ii) cell lines of much lower tumorigenicity (non-human primate kidney and mouse fibroblasts), and (iii) primary porcine macrophages lacking tumorigenicity. Time and intensity control of the MEMP allowed progressive decay of viability fairly correlating to cell tumorigenicity, which was provoked by a proportional alteration of the cytoplasmic membrane permeability, cell cycle arrest at G2, and general collapse of the actin cytoskeleton to the perinuclear region. Correspondingly, these effects drastically inhibited the proliferative capacity of the most tumorigenic cells in clonogenic assays. Moreover, MEMP suppressed in a dose-dependent manner the tumorigenicity of retrovirally transduced luciferase expressing colon adenocarcinoma cells in xenografted immune-competent mice, as determined by tumor growth in a bioluminescence imaging system. Our results support MEMP as an anti-cancer non-invasive physical treatment of substantial specificity for tumorigenic cells with promising therapeutic potential in oncology.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30150"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615363/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessment of molecular modulation by multifrequency electromagnetic pulses to preferably eradicate tumorigenic cells.\",\"authors\":\"Roberta Piredda, Luis G Rodríguez Martínez, Konstantinos Stamatakis, Jorge Martinez-Ortega, Alejandro López Ferráz, José M Almendral, Yolanda Revilla\",\"doi\":\"10.1038/s41598-024-81171-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Physics methods of cancer therapy are extensively used in clinical practice, but they are invasive and often confront undesired side effects. A fully new equipment that allows sustained emission of intense and time-controlled non-ionizing multifrequency electromagnetic pulse (MEMP), has been applied to eukaryotic cells in culture. The equipment discriminates the overall electronegative charge of the cell cultures, and its subsequent proportional emission may thereby become higher and lethal to cancer cells of generally high metabolic activity. In contrast, low tumorigenic cells would be much less affected. We tested the specificity and efficacy of the equipment against a collection of (i) highly tumorigenic cells of human (glioblastoma, cervical carcinoma, and skin) and mouse (colon adenocarcinoma) origin; (ii) cell lines of much lower tumorigenicity (non-human primate kidney and mouse fibroblasts), and (iii) primary porcine macrophages lacking tumorigenicity. Time and intensity control of the MEMP allowed progressive decay of viability fairly correlating to cell tumorigenicity, which was provoked by a proportional alteration of the cytoplasmic membrane permeability, cell cycle arrest at G2, and general collapse of the actin cytoskeleton to the perinuclear region. Correspondingly, these effects drastically inhibited the proliferative capacity of the most tumorigenic cells in clonogenic assays. Moreover, MEMP suppressed in a dose-dependent manner the tumorigenicity of retrovirally transduced luciferase expressing colon adenocarcinoma cells in xenografted immune-competent mice, as determined by tumor growth in a bioluminescence imaging system. Our results support MEMP as an anti-cancer non-invasive physical treatment of substantial specificity for tumorigenic cells with promising therapeutic potential in oncology.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"30150\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615363/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-81171-x\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-81171-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Assessment of molecular modulation by multifrequency electromagnetic pulses to preferably eradicate tumorigenic cells.
Physics methods of cancer therapy are extensively used in clinical practice, but they are invasive and often confront undesired side effects. A fully new equipment that allows sustained emission of intense and time-controlled non-ionizing multifrequency electromagnetic pulse (MEMP), has been applied to eukaryotic cells in culture. The equipment discriminates the overall electronegative charge of the cell cultures, and its subsequent proportional emission may thereby become higher and lethal to cancer cells of generally high metabolic activity. In contrast, low tumorigenic cells would be much less affected. We tested the specificity and efficacy of the equipment against a collection of (i) highly tumorigenic cells of human (glioblastoma, cervical carcinoma, and skin) and mouse (colon adenocarcinoma) origin; (ii) cell lines of much lower tumorigenicity (non-human primate kidney and mouse fibroblasts), and (iii) primary porcine macrophages lacking tumorigenicity. Time and intensity control of the MEMP allowed progressive decay of viability fairly correlating to cell tumorigenicity, which was provoked by a proportional alteration of the cytoplasmic membrane permeability, cell cycle arrest at G2, and general collapse of the actin cytoskeleton to the perinuclear region. Correspondingly, these effects drastically inhibited the proliferative capacity of the most tumorigenic cells in clonogenic assays. Moreover, MEMP suppressed in a dose-dependent manner the tumorigenicity of retrovirally transduced luciferase expressing colon adenocarcinoma cells in xenografted immune-competent mice, as determined by tumor growth in a bioluminescence imaging system. Our results support MEMP as an anti-cancer non-invasive physical treatment of substantial specificity for tumorigenic cells with promising therapeutic potential in oncology.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.