Audrey E De Paepe, Yemila Plana-Alcaide, Clara Garcia-Gorro, Nadia Rodriguez-Dechicha, Irene Vaquer, Matilde Calopa, Ruth de Diego-Balaguer, Estela Camara
{"title":"认知参与可能减缓亨廷顿氏病的临床进展和脑萎缩。","authors":"Audrey E De Paepe, Yemila Plana-Alcaide, Clara Garcia-Gorro, Nadia Rodriguez-Dechicha, Irene Vaquer, Matilde Calopa, Ruth de Diego-Balaguer, Estela Camara","doi":"10.1038/s41598-024-76680-8","DOIUrl":null,"url":null,"abstract":"<p><p>Lifelong cognitive engagement conveys benefits in Huntington's disease (HD) and may positively affect non-cognitive domains in other populations. However, the effect of lifelong cognitive engagement on the progression of motor and psychiatric domains in HD remains unknown, as is its neurobiological basis. Forty-five HD individuals completed the Cognitive Reserve Questionnaire (CRQ) and longitudinal clinical evaluation (maximum total of six visits, mean inter-assessment duration of 13.53 ± 4.1 months). Of these, thirty-three underwent longitudinal neuroimaging (18 ± 6 months follow-up). Generalized linear mixed-effects models were executed to predict the effect of individual differences in lifelong cognitive engagement on HD clinical progression and voxel-based morphometry to explore the impact of lifelong cognitive engagement on whole-brain gray matter volume atrophy. Controlling for age, disease stage, and sex, higher CRQ scores were associated with reduced overall severity and longitudinal progression across cognitive, motor, and psychiatric domains. Those with higher CRQ scores demonstrated reduced gray matter volume loss in the middle frontal gyrus, supplementary motor area, and middle cingulate. This putative impact on HD clinical progression may be conferred by preservation of brain volume in neural hubs that integrate executive function with action initiation and behavioral regulation, providing support for early cognitive engagement, even prior to diagnosis.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30156"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614872/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cognitive engagement may slow clinical progression and brain atrophy in Huntington's disease.\",\"authors\":\"Audrey E De Paepe, Yemila Plana-Alcaide, Clara Garcia-Gorro, Nadia Rodriguez-Dechicha, Irene Vaquer, Matilde Calopa, Ruth de Diego-Balaguer, Estela Camara\",\"doi\":\"10.1038/s41598-024-76680-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lifelong cognitive engagement conveys benefits in Huntington's disease (HD) and may positively affect non-cognitive domains in other populations. However, the effect of lifelong cognitive engagement on the progression of motor and psychiatric domains in HD remains unknown, as is its neurobiological basis. Forty-five HD individuals completed the Cognitive Reserve Questionnaire (CRQ) and longitudinal clinical evaluation (maximum total of six visits, mean inter-assessment duration of 13.53 ± 4.1 months). Of these, thirty-three underwent longitudinal neuroimaging (18 ± 6 months follow-up). Generalized linear mixed-effects models were executed to predict the effect of individual differences in lifelong cognitive engagement on HD clinical progression and voxel-based morphometry to explore the impact of lifelong cognitive engagement on whole-brain gray matter volume atrophy. Controlling for age, disease stage, and sex, higher CRQ scores were associated with reduced overall severity and longitudinal progression across cognitive, motor, and psychiatric domains. Those with higher CRQ scores demonstrated reduced gray matter volume loss in the middle frontal gyrus, supplementary motor area, and middle cingulate. This putative impact on HD clinical progression may be conferred by preservation of brain volume in neural hubs that integrate executive function with action initiation and behavioral regulation, providing support for early cognitive engagement, even prior to diagnosis.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"30156\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614872/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-76680-8\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-76680-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Cognitive engagement may slow clinical progression and brain atrophy in Huntington's disease.
Lifelong cognitive engagement conveys benefits in Huntington's disease (HD) and may positively affect non-cognitive domains in other populations. However, the effect of lifelong cognitive engagement on the progression of motor and psychiatric domains in HD remains unknown, as is its neurobiological basis. Forty-five HD individuals completed the Cognitive Reserve Questionnaire (CRQ) and longitudinal clinical evaluation (maximum total of six visits, mean inter-assessment duration of 13.53 ± 4.1 months). Of these, thirty-three underwent longitudinal neuroimaging (18 ± 6 months follow-up). Generalized linear mixed-effects models were executed to predict the effect of individual differences in lifelong cognitive engagement on HD clinical progression and voxel-based morphometry to explore the impact of lifelong cognitive engagement on whole-brain gray matter volume atrophy. Controlling for age, disease stage, and sex, higher CRQ scores were associated with reduced overall severity and longitudinal progression across cognitive, motor, and psychiatric domains. Those with higher CRQ scores demonstrated reduced gray matter volume loss in the middle frontal gyrus, supplementary motor area, and middle cingulate. This putative impact on HD clinical progression may be conferred by preservation of brain volume in neural hubs that integrate executive function with action initiation and behavioral regulation, providing support for early cognitive engagement, even prior to diagnosis.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.