Younan Kou, Wuyan Guo, Yun Wang, Changhua Kou, Bo Zhang
{"title":"鱼子酱提取物通过NF-κB/MMPs/COL17A1轴激活皮肤干细胞抑制皮肤光老化。","authors":"Younan Kou, Wuyan Guo, Yun Wang, Changhua Kou, Bo Zhang","doi":"10.1111/php.14039","DOIUrl":null,"url":null,"abstract":"<p><p>Ultraviolet radiations (UVR) produce harmful entities and reactive oxygen species (ROS) in skin cells, leading to skin photoaging. Caviar extract (CE) showed outstanding effects in delaying skin aging, but the underlying mechanism remains largely unknown. In this study, we prepared CE with acid protease and examined the anti-skin photoaging effects. The results showed that CE performed no cytotoxicity to HaCaT cells. For antioxidant properties, the EC50 values of DPPH and ABTS radical scavenging activity for CE were 1.27 and 5.20 mg/mL, respectively. It significantly reduced NF-κB, MMP-3 and MMP-9 protein expression levels, and increased IκB and TIMP-1 expression level in UVA-irradiated HaCaT cells. In the skin aging mice model, CE reduced the degree of UV-induced skin photoaging. Histological study confirmed that CE can ameliorate the adverse effects of UV exposure on the skin. Moreover, we found that CE could enhance the activities of Superoxide dismutase (SOD), and increased the contents of hydroxyproline (HYP) in photoaged mice skin. And CE elevated the protein expression level of COL17A1, KRT10, and KRT14 in mice skin. Taken together, our results bright systemic and new insights of CE into preventing UV-induced skin photoaging.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Caviar extract inhibits skin photoaging by activating skin stem cells through NF-κB/MMPs/COL17A1 axis.\",\"authors\":\"Younan Kou, Wuyan Guo, Yun Wang, Changhua Kou, Bo Zhang\",\"doi\":\"10.1111/php.14039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ultraviolet radiations (UVR) produce harmful entities and reactive oxygen species (ROS) in skin cells, leading to skin photoaging. Caviar extract (CE) showed outstanding effects in delaying skin aging, but the underlying mechanism remains largely unknown. In this study, we prepared CE with acid protease and examined the anti-skin photoaging effects. The results showed that CE performed no cytotoxicity to HaCaT cells. For antioxidant properties, the EC50 values of DPPH and ABTS radical scavenging activity for CE were 1.27 and 5.20 mg/mL, respectively. It significantly reduced NF-κB, MMP-3 and MMP-9 protein expression levels, and increased IκB and TIMP-1 expression level in UVA-irradiated HaCaT cells. In the skin aging mice model, CE reduced the degree of UV-induced skin photoaging. Histological study confirmed that CE can ameliorate the adverse effects of UV exposure on the skin. Moreover, we found that CE could enhance the activities of Superoxide dismutase (SOD), and increased the contents of hydroxyproline (HYP) in photoaged mice skin. And CE elevated the protein expression level of COL17A1, KRT10, and KRT14 in mice skin. Taken together, our results bright systemic and new insights of CE into preventing UV-induced skin photoaging.</p>\",\"PeriodicalId\":20133,\"journal\":{\"name\":\"Photochemistry and Photobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochemistry and Photobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/php.14039\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/php.14039","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Caviar extract inhibits skin photoaging by activating skin stem cells through NF-κB/MMPs/COL17A1 axis.
Ultraviolet radiations (UVR) produce harmful entities and reactive oxygen species (ROS) in skin cells, leading to skin photoaging. Caviar extract (CE) showed outstanding effects in delaying skin aging, but the underlying mechanism remains largely unknown. In this study, we prepared CE with acid protease and examined the anti-skin photoaging effects. The results showed that CE performed no cytotoxicity to HaCaT cells. For antioxidant properties, the EC50 values of DPPH and ABTS radical scavenging activity for CE were 1.27 and 5.20 mg/mL, respectively. It significantly reduced NF-κB, MMP-3 and MMP-9 protein expression levels, and increased IκB and TIMP-1 expression level in UVA-irradiated HaCaT cells. In the skin aging mice model, CE reduced the degree of UV-induced skin photoaging. Histological study confirmed that CE can ameliorate the adverse effects of UV exposure on the skin. Moreover, we found that CE could enhance the activities of Superoxide dismutase (SOD), and increased the contents of hydroxyproline (HYP) in photoaged mice skin. And CE elevated the protein expression level of COL17A1, KRT10, and KRT14 in mice skin. Taken together, our results bright systemic and new insights of CE into preventing UV-induced skin photoaging.
期刊介绍:
Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.