Amélie Joly, Jean-Louis Thoumas, Anne Lambert, Estelle Caillon, François Leulier, Filipe De Vadder
{"title":"在幼鼠中,与高脂肪相关的蛋白质限制诱导代谢失调而不导致肥胖。","authors":"Amélie Joly, Jean-Louis Thoumas, Anne Lambert, Estelle Caillon, François Leulier, Filipe De Vadder","doi":"10.1186/s12986-024-00879-9","DOIUrl":null,"url":null,"abstract":"<p><p>Dysregulation of energy metabolism, including hyperglycemia, insulin resistance and fatty liver have been reported in a substantial proportion of lean children. However, non-obese murine models recapitulating these features are lacking to study the mechanisms underlying the development of metabolic dysregulations in lean children. Here, we develop a model of diet-induced metabolic dysfunction without obesity in juvenile mice by feeding male and female mice a diet reflecting Western nutritional intake combined with protein restriction (mWD) during 5 weeks after weaning. mWD-fed mice (35% fat, 8% protein) do not exhibit significant weight gain and have moderate increase in adiposity compared to control mice (16% fat, 20% protein). After 3 weeks of mWD, juvenile mice have impaired glucose metabolism including hyperglycemia, insulin resistance and glucose intolerance. mWD also triggers hepatic metabolism alterations, as shown by the development of simple liver steatosis. Both male and female mice fed with mWD displayed metabolic dysregulation, which a probiotic treatment with Lactiplantibacillus plantarum WJL failed to improve. Overall, mWD-fed mice appear to be a good preclinical model to study the development of diet-induced metabolic dysfunction without obesity in juveniles.</p>","PeriodicalId":19196,"journal":{"name":"Nutrition & Metabolism","volume":"21 1","pages":"100"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613590/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protein restriction associated with high fat induces metabolic dysregulation without obesity in juvenile mice.\",\"authors\":\"Amélie Joly, Jean-Louis Thoumas, Anne Lambert, Estelle Caillon, François Leulier, Filipe De Vadder\",\"doi\":\"10.1186/s12986-024-00879-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dysregulation of energy metabolism, including hyperglycemia, insulin resistance and fatty liver have been reported in a substantial proportion of lean children. However, non-obese murine models recapitulating these features are lacking to study the mechanisms underlying the development of metabolic dysregulations in lean children. Here, we develop a model of diet-induced metabolic dysfunction without obesity in juvenile mice by feeding male and female mice a diet reflecting Western nutritional intake combined with protein restriction (mWD) during 5 weeks after weaning. mWD-fed mice (35% fat, 8% protein) do not exhibit significant weight gain and have moderate increase in adiposity compared to control mice (16% fat, 20% protein). After 3 weeks of mWD, juvenile mice have impaired glucose metabolism including hyperglycemia, insulin resistance and glucose intolerance. mWD also triggers hepatic metabolism alterations, as shown by the development of simple liver steatosis. Both male and female mice fed with mWD displayed metabolic dysregulation, which a probiotic treatment with Lactiplantibacillus plantarum WJL failed to improve. Overall, mWD-fed mice appear to be a good preclinical model to study the development of diet-induced metabolic dysfunction without obesity in juveniles.</p>\",\"PeriodicalId\":19196,\"journal\":{\"name\":\"Nutrition & Metabolism\",\"volume\":\"21 1\",\"pages\":\"100\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613590/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrition & Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12986-024-00879-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12986-024-00879-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Protein restriction associated with high fat induces metabolic dysregulation without obesity in juvenile mice.
Dysregulation of energy metabolism, including hyperglycemia, insulin resistance and fatty liver have been reported in a substantial proportion of lean children. However, non-obese murine models recapitulating these features are lacking to study the mechanisms underlying the development of metabolic dysregulations in lean children. Here, we develop a model of diet-induced metabolic dysfunction without obesity in juvenile mice by feeding male and female mice a diet reflecting Western nutritional intake combined with protein restriction (mWD) during 5 weeks after weaning. mWD-fed mice (35% fat, 8% protein) do not exhibit significant weight gain and have moderate increase in adiposity compared to control mice (16% fat, 20% protein). After 3 weeks of mWD, juvenile mice have impaired glucose metabolism including hyperglycemia, insulin resistance and glucose intolerance. mWD also triggers hepatic metabolism alterations, as shown by the development of simple liver steatosis. Both male and female mice fed with mWD displayed metabolic dysregulation, which a probiotic treatment with Lactiplantibacillus plantarum WJL failed to improve. Overall, mWD-fed mice appear to be a good preclinical model to study the development of diet-induced metabolic dysfunction without obesity in juveniles.
期刊介绍:
Nutrition & Metabolism publishes studies with a clear focus on nutrition and metabolism with applications ranging from nutrition needs, exercise physiology, clinical and population studies, as well as the underlying mechanisms in these aspects.
The areas of interest for Nutrition & Metabolism encompass studies in molecular nutrition in the context of obesity, diabetes, lipedemias, metabolic syndrome and exercise physiology. Manuscripts related to molecular, cellular and human metabolism, nutrient sensing and nutrient–gene interactions are also in interest, as are submissions that have employed new and innovative strategies like metabolomics/lipidomics or other omic-based biomarkers to predict nutritional status and metabolic diseases.
Key areas we wish to encourage submissions from include:
-how diet and specific nutrients interact with genes, proteins or metabolites to influence metabolic phenotypes and disease outcomes;
-the role of epigenetic factors and the microbiome in the pathogenesis of metabolic diseases and their influence on metabolic responses to diet and food components;
-how diet and other environmental factors affect epigenetics and microbiota; the extent to which genetic and nongenetic factors modify personal metabolic responses to diet and food compositions and the mechanisms involved;
-how specific biologic networks and nutrient sensing mechanisms attribute to metabolic variability.