BCM1-EGY1模块平衡叶绿素的生物合成和分解,赋予陆地植物叶绿素稳态。

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dali Fu, Hanlin Zhou, Bernhard Grimm, Peng Wang
{"title":"BCM1-EGY1模块平衡叶绿素的生物合成和分解,赋予陆地植物叶绿素稳态。","authors":"Dali Fu, Hanlin Zhou, Bernhard Grimm, Peng Wang","doi":"10.1016/j.molp.2024.11.016","DOIUrl":null,"url":null,"abstract":"<p><p>Chlorophyll metabolism has evolved during plant evolution. The strictly light-dependent nature of chlorophyll biosynthesis found in angiosperms requires tight coordination of chlorophyll biosynthesis and breakdown to achieve chlorophyll homeostasis. However, the specific control mechanisms remain largely unclear. Here, we demonstrate that the scaffold protein BALANCE OF CHLOROPHYLL METABOLISM1 (BCM1) has co-evolved with the carboxy-terminal domains of specific enzymes involved in chlorophyll biosynthesis and breakdown, including GENOMES UNCOUPLED 4 (GUN4) and Mg-dechelatase 1 (SGR1). We found that the land plant-specific interaction of BCM1 with the carboxy-terminal domains of GUN4 and SGR1 is indispensable for concurrent stimulation of chlorophyll biosynthesis and suppression of chlorophyll breakdown. The land plant-specific carboxy-terminal domain is essential for the membrane docking and turnover of GUN4, whereas it is key for proteolysis of SGR1. More importantly, we identified the metallopeptidase Gravitropism-deficient and Yellow-green 1 (EGY1) as the proteolytic machinery responsible for BCM1-mediated proteolysis of SGR1. In summary, this study reveals the BCM1-EGY1 module has evolved to maintain chlorophyll homeostasis by the post-translational control of the balance between chlorophyll biosynthesis and breakdown. This mechanism thus represents an evolutionary response to the metabolic demands imposed on plants in terrestrial environments.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The BCM1-EGY1 module balances chlorophyll biosynthesis and breakdown to confer chlorophyll homeostasis in land plants.\",\"authors\":\"Dali Fu, Hanlin Zhou, Bernhard Grimm, Peng Wang\",\"doi\":\"10.1016/j.molp.2024.11.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chlorophyll metabolism has evolved during plant evolution. The strictly light-dependent nature of chlorophyll biosynthesis found in angiosperms requires tight coordination of chlorophyll biosynthesis and breakdown to achieve chlorophyll homeostasis. However, the specific control mechanisms remain largely unclear. Here, we demonstrate that the scaffold protein BALANCE OF CHLOROPHYLL METABOLISM1 (BCM1) has co-evolved with the carboxy-terminal domains of specific enzymes involved in chlorophyll biosynthesis and breakdown, including GENOMES UNCOUPLED 4 (GUN4) and Mg-dechelatase 1 (SGR1). We found that the land plant-specific interaction of BCM1 with the carboxy-terminal domains of GUN4 and SGR1 is indispensable for concurrent stimulation of chlorophyll biosynthesis and suppression of chlorophyll breakdown. The land plant-specific carboxy-terminal domain is essential for the membrane docking and turnover of GUN4, whereas it is key for proteolysis of SGR1. More importantly, we identified the metallopeptidase Gravitropism-deficient and Yellow-green 1 (EGY1) as the proteolytic machinery responsible for BCM1-mediated proteolysis of SGR1. In summary, this study reveals the BCM1-EGY1 module has evolved to maintain chlorophyll homeostasis by the post-translational control of the balance between chlorophyll biosynthesis and breakdown. This mechanism thus represents an evolutionary response to the metabolic demands imposed on plants in terrestrial environments.</p>\",\"PeriodicalId\":19012,\"journal\":{\"name\":\"Molecular Plant\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Plant\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molp.2024.11.016\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2024.11.016","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

叶绿素代谢在植物进化过程中不断进化。被子植物叶绿素生物合成的严格光依赖性需要叶绿素生物合成和分解的紧密协调才能实现叶绿素稳态。然而,具体的控制机制尚不清楚。在这里,我们证明叶绿素代谢m1 (BCM1)的支架蛋白平衡与参与叶绿素生物合成和分解的特定酶的羧基末端结构域共同进化,包括基因组解偶联4 (GUN4)和mg脱羧酶1 (SGR1)。我们发现,BCM1与GUN4和SGR1的羧基末端结构域的陆生植物特异性相互作用对于同时刺激叶绿素生物合成和抑制叶绿素分解是必不可少的。陆地植物特异性羧基末端结构域对GUN4的膜对接和周转至关重要,而对SGR1的蛋白水解至关重要。更重要的是,我们发现金属肽酶gravitroism -deficient and黄绿色1 (EGY1)是bcm1介导的SGR1蛋白水解机制。综上所述,本研究揭示了BCM1-EGY1模块已经进化到通过翻译后控制叶绿素合成和分解之间的平衡来维持叶绿素稳态。因此,这种机制代表了对陆地环境中植物代谢需求的进化反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The BCM1-EGY1 module balances chlorophyll biosynthesis and breakdown to confer chlorophyll homeostasis in land plants.

Chlorophyll metabolism has evolved during plant evolution. The strictly light-dependent nature of chlorophyll biosynthesis found in angiosperms requires tight coordination of chlorophyll biosynthesis and breakdown to achieve chlorophyll homeostasis. However, the specific control mechanisms remain largely unclear. Here, we demonstrate that the scaffold protein BALANCE OF CHLOROPHYLL METABOLISM1 (BCM1) has co-evolved with the carboxy-terminal domains of specific enzymes involved in chlorophyll biosynthesis and breakdown, including GENOMES UNCOUPLED 4 (GUN4) and Mg-dechelatase 1 (SGR1). We found that the land plant-specific interaction of BCM1 with the carboxy-terminal domains of GUN4 and SGR1 is indispensable for concurrent stimulation of chlorophyll biosynthesis and suppression of chlorophyll breakdown. The land plant-specific carboxy-terminal domain is essential for the membrane docking and turnover of GUN4, whereas it is key for proteolysis of SGR1. More importantly, we identified the metallopeptidase Gravitropism-deficient and Yellow-green 1 (EGY1) as the proteolytic machinery responsible for BCM1-mediated proteolysis of SGR1. In summary, this study reveals the BCM1-EGY1 module has evolved to maintain chlorophyll homeostasis by the post-translational control of the balance between chlorophyll biosynthesis and breakdown. This mechanism thus represents an evolutionary response to the metabolic demands imposed on plants in terrestrial environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信