Mirza Nadeem Ahmad, Sohail Nadeem, Mohsin Javed, Ammar Zidan, Muhammad Naveed Anjum, Muhammad Fayyaz Farid, Ali Bahadur, Shahid Iqbal, Sajid Mahmood, Abd-ElAziem Farouk, Salman Aloufi
{"title":"活性生物吸附剂吸附去除纺织废水中直接黄26染料的动力学及等温分析。","authors":"Mirza Nadeem Ahmad, Sohail Nadeem, Mohsin Javed, Ammar Zidan, Muhammad Naveed Anjum, Muhammad Fayyaz Farid, Ali Bahadur, Shahid Iqbal, Sajid Mahmood, Abd-ElAziem Farouk, Salman Aloufi","doi":"10.1002/jemt.24760","DOIUrl":null,"url":null,"abstract":"<p><p>Due to their widespread usage in recent years, synthetic dyes may be difficult to remove and pose a health concern. Bioadsorbents proved a low-cost and sustainable method for dye removal. In this study, straight yellow 26 is extracted from textile effluent using sugarcane bagasse. Sugarcane bagasse was treated with propionic acid to enhance the adsorption capability and 0.25 mm particle size was used for further studies which was confirmed by BET analysis. Standard solutions of direct yellow 26 dye were prepared from 10 to 100 ppm concentrations and absorbance was recorded with the help of a UV visible spectrophotometer. After optimizing different parameters (concentration of dye and bioadsorbent dose, pH, time, and particle size), the studies explored that the maximum dye removal percentage was 89% obtained at pH 3, contact time 120 min, particle size 0.25 mm, high adsorbent, and low concentration of dye solution. The kinetic studies were also employed to comprehend the adsorption isotherm and Freundlich isotherm that revealed the pseudo-first-order adsorption process.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic and Isothermal Analysis of the Adsorptive Elimination of Direct Yellow 26 Dye Utilizing Activated Bioadsorbent From Textile Effluent.\",\"authors\":\"Mirza Nadeem Ahmad, Sohail Nadeem, Mohsin Javed, Ammar Zidan, Muhammad Naveed Anjum, Muhammad Fayyaz Farid, Ali Bahadur, Shahid Iqbal, Sajid Mahmood, Abd-ElAziem Farouk, Salman Aloufi\",\"doi\":\"10.1002/jemt.24760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to their widespread usage in recent years, synthetic dyes may be difficult to remove and pose a health concern. Bioadsorbents proved a low-cost and sustainable method for dye removal. In this study, straight yellow 26 is extracted from textile effluent using sugarcane bagasse. Sugarcane bagasse was treated with propionic acid to enhance the adsorption capability and 0.25 mm particle size was used for further studies which was confirmed by BET analysis. Standard solutions of direct yellow 26 dye were prepared from 10 to 100 ppm concentrations and absorbance was recorded with the help of a UV visible spectrophotometer. After optimizing different parameters (concentration of dye and bioadsorbent dose, pH, time, and particle size), the studies explored that the maximum dye removal percentage was 89% obtained at pH 3, contact time 120 min, particle size 0.25 mm, high adsorbent, and low concentration of dye solution. The kinetic studies were also employed to comprehend the adsorption isotherm and Freundlich isotherm that revealed the pseudo-first-order adsorption process.</p>\",\"PeriodicalId\":18684,\"journal\":{\"name\":\"Microscopy Research and Technique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy Research and Technique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/jemt.24760\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24760","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Kinetic and Isothermal Analysis of the Adsorptive Elimination of Direct Yellow 26 Dye Utilizing Activated Bioadsorbent From Textile Effluent.
Due to their widespread usage in recent years, synthetic dyes may be difficult to remove and pose a health concern. Bioadsorbents proved a low-cost and sustainable method for dye removal. In this study, straight yellow 26 is extracted from textile effluent using sugarcane bagasse. Sugarcane bagasse was treated with propionic acid to enhance the adsorption capability and 0.25 mm particle size was used for further studies which was confirmed by BET analysis. Standard solutions of direct yellow 26 dye were prepared from 10 to 100 ppm concentrations and absorbance was recorded with the help of a UV visible spectrophotometer. After optimizing different parameters (concentration of dye and bioadsorbent dose, pH, time, and particle size), the studies explored that the maximum dye removal percentage was 89% obtained at pH 3, contact time 120 min, particle size 0.25 mm, high adsorbent, and low concentration of dye solution. The kinetic studies were also employed to comprehend the adsorption isotherm and Freundlich isotherm that revealed the pseudo-first-order adsorption process.
期刊介绍:
Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.