Vincent Ciesielski , Thomas Guerbette , Léa Fret , Mélodie Succar , Youenn Launay , Patrice Dahirel , Philippe Legrand , Manuel Vlach , Sophie Blat , Vincent Rioux
{"title":"断奶时必需脂肪酸缺乏大鼠的饮食补充五酸揭示了奇链n-8 PUFAs新家族。","authors":"Vincent Ciesielski , Thomas Guerbette , Léa Fret , Mélodie Succar , Youenn Launay , Patrice Dahirel , Philippe Legrand , Manuel Vlach , Sophie Blat , Vincent Rioux","doi":"10.1016/j.jnutbio.2024.109814","DOIUrl":null,"url":null,"abstract":"<div><div>Pentadecanoic acid (C15:0) is a saturated odd-chain fatty acid (OCFA), mainly found in dairy products. Its physiological and nutritional effects are still unknown, yet some recent evidences suggest it might be beneficial to human health. Moreover, pentadecanoic acid has recently been suspected of having essential roles in humans, although the mechanisms are not described. We therefore questioned the potential essentiality of this fatty acid (FA). We investigated <em>in vivo</em> the effect of a C15:0 supplementation on essential fatty acid (EFA) deficient Wistar rats. Female rats were fed an EFA-deficient diet 2 weeks before mating, during pregnancy and lactation. Weaned pups were fed the EFA-deficient diet or were switched to a diet supplemented with C15:0 or linoleic acid (LA) for 11 weeks. A control group was fed with EFA during the whole study. Since linoleic acid deficiency is known to induce growth delay, weights were measured throughout the experiment and FA content in collected tissues were analyzed to evaluate biochemical markers of the deficiency. As expected, EFA-deficient rats showed growth retardation, compared to control rats. Supplementation of C15:0 at weaning increased early growth rate compared to deficient animals, as also did the supplementation of C18:2 n-6. Furthermore, the supplementation of C15:0 in the diet of EFA-deficient animals induced the previously undescribed synthesis of odd-chain PUFAs of the n-8 family (C19:3, C21:3 and C21:4 n-8). These results suggest dietary C15:0 might counteract EFA induced growth retardation, possibly through the synthesis of odd-chain n-8 PUFAs, yet mechanisms are to be deciphered for further validation.</div></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"137 ","pages":"Article 109814"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dietary pentadecanoic acid supplementation at weaning in essential fatty acid-deficient rats shed light on the new family of odd-chain n-8 PUFAs\",\"authors\":\"Vincent Ciesielski , Thomas Guerbette , Léa Fret , Mélodie Succar , Youenn Launay , Patrice Dahirel , Philippe Legrand , Manuel Vlach , Sophie Blat , Vincent Rioux\",\"doi\":\"10.1016/j.jnutbio.2024.109814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pentadecanoic acid (C15:0) is a saturated odd-chain fatty acid (OCFA), mainly found in dairy products. Its physiological and nutritional effects are still unknown, yet some recent evidences suggest it might be beneficial to human health. Moreover, pentadecanoic acid has recently been suspected of having essential roles in humans, although the mechanisms are not described. We therefore questioned the potential essentiality of this fatty acid (FA). We investigated <em>in vivo</em> the effect of a C15:0 supplementation on essential fatty acid (EFA) deficient Wistar rats. Female rats were fed an EFA-deficient diet 2 weeks before mating, during pregnancy and lactation. Weaned pups were fed the EFA-deficient diet or were switched to a diet supplemented with C15:0 or linoleic acid (LA) for 11 weeks. A control group was fed with EFA during the whole study. Since linoleic acid deficiency is known to induce growth delay, weights were measured throughout the experiment and FA content in collected tissues were analyzed to evaluate biochemical markers of the deficiency. As expected, EFA-deficient rats showed growth retardation, compared to control rats. Supplementation of C15:0 at weaning increased early growth rate compared to deficient animals, as also did the supplementation of C18:2 n-6. Furthermore, the supplementation of C15:0 in the diet of EFA-deficient animals induced the previously undescribed synthesis of odd-chain PUFAs of the n-8 family (C19:3, C21:3 and C21:4 n-8). These results suggest dietary C15:0 might counteract EFA induced growth retardation, possibly through the synthesis of odd-chain n-8 PUFAs, yet mechanisms are to be deciphered for further validation.</div></div>\",\"PeriodicalId\":16618,\"journal\":{\"name\":\"Journal of Nutritional Biochemistry\",\"volume\":\"137 \",\"pages\":\"Article 109814\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutritional Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955286324002456\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286324002456","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Dietary pentadecanoic acid supplementation at weaning in essential fatty acid-deficient rats shed light on the new family of odd-chain n-8 PUFAs
Pentadecanoic acid (C15:0) is a saturated odd-chain fatty acid (OCFA), mainly found in dairy products. Its physiological and nutritional effects are still unknown, yet some recent evidences suggest it might be beneficial to human health. Moreover, pentadecanoic acid has recently been suspected of having essential roles in humans, although the mechanisms are not described. We therefore questioned the potential essentiality of this fatty acid (FA). We investigated in vivo the effect of a C15:0 supplementation on essential fatty acid (EFA) deficient Wistar rats. Female rats were fed an EFA-deficient diet 2 weeks before mating, during pregnancy and lactation. Weaned pups were fed the EFA-deficient diet or were switched to a diet supplemented with C15:0 or linoleic acid (LA) for 11 weeks. A control group was fed with EFA during the whole study. Since linoleic acid deficiency is known to induce growth delay, weights were measured throughout the experiment and FA content in collected tissues were analyzed to evaluate biochemical markers of the deficiency. As expected, EFA-deficient rats showed growth retardation, compared to control rats. Supplementation of C15:0 at weaning increased early growth rate compared to deficient animals, as also did the supplementation of C18:2 n-6. Furthermore, the supplementation of C15:0 in the diet of EFA-deficient animals induced the previously undescribed synthesis of odd-chain PUFAs of the n-8 family (C19:3, C21:3 and C21:4 n-8). These results suggest dietary C15:0 might counteract EFA induced growth retardation, possibly through the synthesis of odd-chain n-8 PUFAs, yet mechanisms are to be deciphered for further validation.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.