人类pirna及其在蛋白质编码基因中的潜在靶点之间的进化非独立性。

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chong He, Hao Zhu
{"title":"人类pirna及其在蛋白质编码基因中的潜在靶点之间的进化非独立性。","authors":"Chong He, Hao Zhu","doi":"10.1007/s00239-024-10220-w","DOIUrl":null,"url":null,"abstract":"<p><p>PIWI-interacting RNAs (piRNAs) are the most diverse small RNAs in animals. These small RNAs have been known to play an important role in the suppression of transposable elements (TEs). Protein-coding genes (PCGs) are the most well-recognized functional genes in genomes. In the present study, we designed and performed a set of statistics-based evolutionary analyses to reveal nonrandom phenomena in the evolution of human piRNA-PCG targeting relationships. Through analyzing the occurrence of single nucleotide variants (SNVs) in potential piRNA target sites in human PCGs, we provide evidence that there exists a mutational force biased to strengthen piRNA-PCG targeting relationships. Through analyzing the allele frequencies of SNVs in potential piRNA target sites in human PCGs, we provide evidence that there exists a piRNA-dependent selective force acting on potential piRNA target sites in human PCGs. Because of these nonrandom evolutionary forces, human piRNAs and their potential target sites in PCGs are not independent in evolution. Additionally, we found evidence that potential piRNA target sites in human PCGs are particularly likely to be present in regions derived from Alu elements. This finding suggests that the aforementioned evolutionary forces acting on piRNA-PCG targeting relationships could be particularly prone to affect Alu-derived regions in human PCGs. Collectively, our findings provide new insights into the evolutionary interplay between piRNAs, PCGs, and Alu elements in the evolution of the human genome.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary Nonindependence Between Human piRNAs and Their Potential Target Sites in Protein-Coding Genes.\",\"authors\":\"Chong He, Hao Zhu\",\"doi\":\"10.1007/s00239-024-10220-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>PIWI-interacting RNAs (piRNAs) are the most diverse small RNAs in animals. These small RNAs have been known to play an important role in the suppression of transposable elements (TEs). Protein-coding genes (PCGs) are the most well-recognized functional genes in genomes. In the present study, we designed and performed a set of statistics-based evolutionary analyses to reveal nonrandom phenomena in the evolution of human piRNA-PCG targeting relationships. Through analyzing the occurrence of single nucleotide variants (SNVs) in potential piRNA target sites in human PCGs, we provide evidence that there exists a mutational force biased to strengthen piRNA-PCG targeting relationships. Through analyzing the allele frequencies of SNVs in potential piRNA target sites in human PCGs, we provide evidence that there exists a piRNA-dependent selective force acting on potential piRNA target sites in human PCGs. Because of these nonrandom evolutionary forces, human piRNAs and their potential target sites in PCGs are not independent in evolution. Additionally, we found evidence that potential piRNA target sites in human PCGs are particularly likely to be present in regions derived from Alu elements. This finding suggests that the aforementioned evolutionary forces acting on piRNA-PCG targeting relationships could be particularly prone to affect Alu-derived regions in human PCGs. Collectively, our findings provide new insights into the evolutionary interplay between piRNAs, PCGs, and Alu elements in the evolution of the human genome.</p>\",\"PeriodicalId\":16366,\"journal\":{\"name\":\"Journal of Molecular Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00239-024-10220-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-024-10220-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

piwi相互作用rna (pirna)是动物中最多样化的小rna。已知这些小rna在抑制转座因子(te)中起重要作用。蛋白质编码基因(PCGs)是基因组中最常见的功能基因。在本研究中,我们设计并执行了一套基于统计的进化分析,以揭示人类piRNA-PCG靶向关系进化中的非随机现象。通过分析人类PCGs中潜在piRNA靶点单核苷酸变异(snv)的发生情况,我们提供了证据,表明存在一种偏向于加强piRNA- pcg靶向关系的突变力。通过分析人类PCGs中潜在piRNA靶点snv的等位基因频率,我们提供了证据,证明在人类PCGs中存在piRNA依赖的选择力作用于潜在piRNA靶点。由于这些非随机的进化力量,人类pirna及其在PCGs中的潜在靶点在进化中不是独立的。此外,我们发现证据表明,人类PCGs中潜在的piRNA靶点特别可能存在于源自Alu元件的区域。这一发现表明,上述作用于piRNA-PCG靶向关系的进化力量可能特别容易影响人类pcg中的alu衍生区域。总的来说,我们的发现为人类基因组进化中pirna、PCGs和Alu元件之间的进化相互作用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary Nonindependence Between Human piRNAs and Their Potential Target Sites in Protein-Coding Genes.

PIWI-interacting RNAs (piRNAs) are the most diverse small RNAs in animals. These small RNAs have been known to play an important role in the suppression of transposable elements (TEs). Protein-coding genes (PCGs) are the most well-recognized functional genes in genomes. In the present study, we designed and performed a set of statistics-based evolutionary analyses to reveal nonrandom phenomena in the evolution of human piRNA-PCG targeting relationships. Through analyzing the occurrence of single nucleotide variants (SNVs) in potential piRNA target sites in human PCGs, we provide evidence that there exists a mutational force biased to strengthen piRNA-PCG targeting relationships. Through analyzing the allele frequencies of SNVs in potential piRNA target sites in human PCGs, we provide evidence that there exists a piRNA-dependent selective force acting on potential piRNA target sites in human PCGs. Because of these nonrandom evolutionary forces, human piRNAs and their potential target sites in PCGs are not independent in evolution. Additionally, we found evidence that potential piRNA target sites in human PCGs are particularly likely to be present in regions derived from Alu elements. This finding suggests that the aforementioned evolutionary forces acting on piRNA-PCG targeting relationships could be particularly prone to affect Alu-derived regions in human PCGs. Collectively, our findings provide new insights into the evolutionary interplay between piRNAs, PCGs, and Alu elements in the evolution of the human genome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信