环口动物和颌口动物进化中的域变换。

IF 1.8 3区 生物学 Q3 DEVELOPMENTAL BIOLOGY
Hirofumi Kariyayama, Takeshi Kawashima, Hiroshi Wada, Haruka Ozaki
{"title":"环口动物和颌口动物进化中的域变换。","authors":"Hirofumi Kariyayama, Takeshi Kawashima, Hiroshi Wada, Haruka Ozaki","doi":"10.1002/jez.b.23282","DOIUrl":null,"url":null,"abstract":"<p><p>Vertebrates acquired various novel traits that were pivotal in their morphological evolution. Domain shuffling, rearrangements of functional domains between genes, is a key molecular mechanism in deuterostome evolution. However, comprehensive studies focusing on early vertebrates are lacking. With advancements in genomic studies, the genomes of early vertebrate groups and cyclostomes are now accessible, enabling detailed comparative analysis while considering the timing of gene acquisition during evolution. Here, we compared 22 metazoans, including four cyclostomes, to identify genes containing novel domain architectures acquired via domain-shuffling (DSO-Gs), in the common ancestor of vertebrates, gnathostomes, and cyclostomes. We found that DSO-Gs in the common ancestor of vertebrates were associated with novel vertebrate characteristics and those in the common ancestor of gnathostomes correlated with gnathostome-specific traits. Notably, several DSO-Gs acquired in common ancestors of vertebrates have been linked to myelination, a distinct characteristic of gnathostomes. Additionally, in situ hybridization revealed specific expression patterns for the three vertebrate DSO-Gs in cyclostomes, supporting their potential functions. Our findings highlight the significance of DSO-Gs in the emergence of novel traits in the common ancestors of vertebrates, gnathostomes, and cyclostomes.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain-Shuffling in the Evolution of Cyclostomes and Gnathostomes.\",\"authors\":\"Hirofumi Kariyayama, Takeshi Kawashima, Hiroshi Wada, Haruka Ozaki\",\"doi\":\"10.1002/jez.b.23282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vertebrates acquired various novel traits that were pivotal in their morphological evolution. Domain shuffling, rearrangements of functional domains between genes, is a key molecular mechanism in deuterostome evolution. However, comprehensive studies focusing on early vertebrates are lacking. With advancements in genomic studies, the genomes of early vertebrate groups and cyclostomes are now accessible, enabling detailed comparative analysis while considering the timing of gene acquisition during evolution. Here, we compared 22 metazoans, including four cyclostomes, to identify genes containing novel domain architectures acquired via domain-shuffling (DSO-Gs), in the common ancestor of vertebrates, gnathostomes, and cyclostomes. We found that DSO-Gs in the common ancestor of vertebrates were associated with novel vertebrate characteristics and those in the common ancestor of gnathostomes correlated with gnathostome-specific traits. Notably, several DSO-Gs acquired in common ancestors of vertebrates have been linked to myelination, a distinct characteristic of gnathostomes. Additionally, in situ hybridization revealed specific expression patterns for the three vertebrate DSO-Gs in cyclostomes, supporting their potential functions. Our findings highlight the significance of DSO-Gs in the emergence of novel traits in the common ancestors of vertebrates, gnathostomes, and cyclostomes.</p>\",\"PeriodicalId\":15682,\"journal\":{\"name\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jez.b.23282\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jez.b.23282","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脊椎动物获得了在形态进化中至关重要的各种新特征。结构域改组,即基因间功能结构域的重排,是后口动物进化的关键分子机制。然而,缺乏对早期脊椎动物的全面研究。随着基因组研究的进步,早期脊椎动物群体和环口动物的基因组现在可以访问,可以在考虑进化过程中基因获取时间的同时进行详细的比较分析。在这里,我们比较了22种后生动物,包括4种环口动物,以鉴定脊椎动物、颌口动物和环口动物共同祖先中含有通过结构域改组(DSO-Gs)获得的新结构域结构的基因。我们发现,脊椎动物共同祖先的DSO-Gs与脊椎动物的新特征有关,而啮齿动物共同祖先的DSO-Gs与啮齿动物特有的特征有关。值得注意的是,在脊椎动物的共同祖先中获得的一些DSO-Gs与髓鞘形成有关,髓鞘形成是颌口动物的一个明显特征。此外,原位杂交揭示了三种脊椎动物DSO-Gs在环口中的特异性表达模式,支持它们的潜在功能。我们的研究结果强调了DSO-Gs在脊椎动物、颌口动物和环口动物共同祖先中出现新特征的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain-Shuffling in the Evolution of Cyclostomes and Gnathostomes.

Vertebrates acquired various novel traits that were pivotal in their morphological evolution. Domain shuffling, rearrangements of functional domains between genes, is a key molecular mechanism in deuterostome evolution. However, comprehensive studies focusing on early vertebrates are lacking. With advancements in genomic studies, the genomes of early vertebrate groups and cyclostomes are now accessible, enabling detailed comparative analysis while considering the timing of gene acquisition during evolution. Here, we compared 22 metazoans, including four cyclostomes, to identify genes containing novel domain architectures acquired via domain-shuffling (DSO-Gs), in the common ancestor of vertebrates, gnathostomes, and cyclostomes. We found that DSO-Gs in the common ancestor of vertebrates were associated with novel vertebrate characteristics and those in the common ancestor of gnathostomes correlated with gnathostome-specific traits. Notably, several DSO-Gs acquired in common ancestors of vertebrates have been linked to myelination, a distinct characteristic of gnathostomes. Additionally, in situ hybridization revealed specific expression patterns for the three vertebrate DSO-Gs in cyclostomes, supporting their potential functions. Our findings highlight the significance of DSO-Gs in the emergence of novel traits in the common ancestors of vertebrates, gnathostomes, and cyclostomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
9.10%
发文量
63
审稿时长
6-12 weeks
期刊介绍: Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms. The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB. We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信