二氢杨梅素通过减少活性氧生成和含3炎性体激活的nod样受体Pyrin结构域抑制脂多糖诱导的肠道损伤。

IF 2.2 3区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Yicong Chang, Xinru Jiang, Zhenghua Ji, Yingchao Gong, Xianan Fan, Beili Hao, Liang Yuan, Ishfaq Muhammad, Rui Li, Changwen Li, Fangping Liu
{"title":"二氢杨梅素通过减少活性氧生成和含3炎性体激活的nod样受体Pyrin结构域抑制脂多糖诱导的肠道损伤。","authors":"Yicong Chang, Xinru Jiang, Zhenghua Ji, Yingchao Gong, Xianan Fan, Beili Hao, Liang Yuan, Ishfaq Muhammad, Rui Li, Changwen Li, Fangping Liu","doi":"10.1111/jpn.14077","DOIUrl":null,"url":null,"abstract":"<p><p>As an integral component of the gram-negative bacterial cellular envelope, excess production of lipopolysaccharide (LPS) regularly precipitates causing intestinal damage and barrier dysfunction in avian species. Dihydromyricetin (DHM), a naturally occurring constituent in rattan tea, exhibits protective characteristics against various tissue injuries. However, the intervention mechanism of DHM on intestinal injury induced by LPS in chickens has not been determined. Consequently, this study aimed to elucidate the mechanisms through which DHM mitigates LPS-induced intestinal damage in chickens through the reactive oxygen species (ROS)-NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Primary intestinal epithelial cells (IECs) were isolated and cultured from 14-day-old specific pathogen free (SPF) chicken embryos, and DHM ranging from 20 to 320 μmol/L increased cell survival rates. Additionally, DHM at 20 and 40 μmol/L demonstrated reduction in oxidative stress and ROS accumulation, mirroring the impact of ROS inhibitor (2.5 mmol/L NAC). DHM efficiently regulated ROS production, thereby augmenting ZO-1, occludin and claudin-1 expression to enhance barrier function; upregulating bcl-2 expression and downregulating bax and caspase-3 expression to regulate apoptosis and suppressing inflammation in IECs. Suppression of ROS subsequently attenuates NLRP3 inflammasome activation, leading to a remarkable downregulation of IL-1β, IL-18 and lactate dehydrogenase (LDH) secretion, consistent with direct inactivation of NLRP3 inflammasome (10 μmol/L MCC950). Notably, DHM diminished IL-1β and IL-18 levels and LDH activity via suppression of ROS-regulated NLRP3 and caspase-1 expression and activation. In summary, DHM prevents LPS-induced intestinal impairment by modulating ROS generation and NLRP3 inflammasome activation.</p>","PeriodicalId":14942,"journal":{"name":"Journal of Animal Physiology and Animal Nutrition","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dihydromyricetin Suppresses Lipopolysaccharide-Induced Intestinal Injury Through Reducing Reactive Oxygen Species Generation and NOD-Like Receptor Pyrin Domain Containing 3 Inflammasome Activation.\",\"authors\":\"Yicong Chang, Xinru Jiang, Zhenghua Ji, Yingchao Gong, Xianan Fan, Beili Hao, Liang Yuan, Ishfaq Muhammad, Rui Li, Changwen Li, Fangping Liu\",\"doi\":\"10.1111/jpn.14077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As an integral component of the gram-negative bacterial cellular envelope, excess production of lipopolysaccharide (LPS) regularly precipitates causing intestinal damage and barrier dysfunction in avian species. Dihydromyricetin (DHM), a naturally occurring constituent in rattan tea, exhibits protective characteristics against various tissue injuries. However, the intervention mechanism of DHM on intestinal injury induced by LPS in chickens has not been determined. Consequently, this study aimed to elucidate the mechanisms through which DHM mitigates LPS-induced intestinal damage in chickens through the reactive oxygen species (ROS)-NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Primary intestinal epithelial cells (IECs) were isolated and cultured from 14-day-old specific pathogen free (SPF) chicken embryos, and DHM ranging from 20 to 320 μmol/L increased cell survival rates. Additionally, DHM at 20 and 40 μmol/L demonstrated reduction in oxidative stress and ROS accumulation, mirroring the impact of ROS inhibitor (2.5 mmol/L NAC). DHM efficiently regulated ROS production, thereby augmenting ZO-1, occludin and claudin-1 expression to enhance barrier function; upregulating bcl-2 expression and downregulating bax and caspase-3 expression to regulate apoptosis and suppressing inflammation in IECs. Suppression of ROS subsequently attenuates NLRP3 inflammasome activation, leading to a remarkable downregulation of IL-1β, IL-18 and lactate dehydrogenase (LDH) secretion, consistent with direct inactivation of NLRP3 inflammasome (10 μmol/L MCC950). Notably, DHM diminished IL-1β and IL-18 levels and LDH activity via suppression of ROS-regulated NLRP3 and caspase-1 expression and activation. In summary, DHM prevents LPS-induced intestinal impairment by modulating ROS generation and NLRP3 inflammasome activation.</p>\",\"PeriodicalId\":14942,\"journal\":{\"name\":\"Journal of Animal Physiology and Animal Nutrition\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Physiology and Animal Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/jpn.14077\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Physiology and Animal Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jpn.14077","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

作为革兰氏阴性细菌细胞包膜的组成部分,脂多糖(LPS)的过量产生会导致鸟类肠道损伤和屏障功能障碍。二氢杨梅素(DHM)是藤茶中天然存在的一种成分,对各种组织损伤具有保护作用。然而,DHM对LPS诱导的鸡肠道损伤的干预机制尚不明确。因此,本研究旨在阐明DHM通过活性氧(ROS)- nod样受体pyrin结构域3 (NLRP3)炎性体减轻lps诱导的鸡肠道损伤的机制。从14日龄SPF (specific pathogen free, SPF)鸡胚中分离培养原代肠上皮细胞(IECs), 20 ~ 320 μmol/L DHM可提高细胞存活率。此外,20和40 μmol/L的DHM可以减少氧化应激和ROS积累,这与ROS抑制剂(2.5 mmol/L NAC)的作用相同。DHM有效调节ROS的产生,从而增加ZO-1、occludin和claudin-1的表达,增强屏障功能;上调bcl-2表达,下调bax和caspase-3表达,调节IECs细胞凋亡,抑制炎症。抑制ROS随后减弱NLRP3炎性小体的激活,导致IL-1β、IL-18和乳酸脱氢酶(LDH)分泌显著下调,与NLRP3炎性小体直接失活(10 μmol/L MCC950)一致。值得注意的是,DHM通过抑制ros调节的NLRP3和caspase-1的表达和激活来降低IL-1β和IL-18水平和LDH活性。综上所述,DHM通过调节ROS的产生和NLRP3炎性体的激活来预防lps诱导的肠道损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dihydromyricetin Suppresses Lipopolysaccharide-Induced Intestinal Injury Through Reducing Reactive Oxygen Species Generation and NOD-Like Receptor Pyrin Domain Containing 3 Inflammasome Activation.

As an integral component of the gram-negative bacterial cellular envelope, excess production of lipopolysaccharide (LPS) regularly precipitates causing intestinal damage and barrier dysfunction in avian species. Dihydromyricetin (DHM), a naturally occurring constituent in rattan tea, exhibits protective characteristics against various tissue injuries. However, the intervention mechanism of DHM on intestinal injury induced by LPS in chickens has not been determined. Consequently, this study aimed to elucidate the mechanisms through which DHM mitigates LPS-induced intestinal damage in chickens through the reactive oxygen species (ROS)-NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Primary intestinal epithelial cells (IECs) were isolated and cultured from 14-day-old specific pathogen free (SPF) chicken embryos, and DHM ranging from 20 to 320 μmol/L increased cell survival rates. Additionally, DHM at 20 and 40 μmol/L demonstrated reduction in oxidative stress and ROS accumulation, mirroring the impact of ROS inhibitor (2.5 mmol/L NAC). DHM efficiently regulated ROS production, thereby augmenting ZO-1, occludin and claudin-1 expression to enhance barrier function; upregulating bcl-2 expression and downregulating bax and caspase-3 expression to regulate apoptosis and suppressing inflammation in IECs. Suppression of ROS subsequently attenuates NLRP3 inflammasome activation, leading to a remarkable downregulation of IL-1β, IL-18 and lactate dehydrogenase (LDH) secretion, consistent with direct inactivation of NLRP3 inflammasome (10 μmol/L MCC950). Notably, DHM diminished IL-1β and IL-18 levels and LDH activity via suppression of ROS-regulated NLRP3 and caspase-1 expression and activation. In summary, DHM prevents LPS-induced intestinal impairment by modulating ROS generation and NLRP3 inflammasome activation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Animal Physiology and Animal Nutrition
Journal of Animal Physiology and Animal Nutrition 农林科学-奶制品与动物科学
CiteScore
6.30
自引率
0.00%
发文量
124
审稿时长
2 months
期刊介绍: As an international forum for hypothesis-driven scientific research, the Journal of Animal Physiology and Animal Nutrition publishes original papers in the fields of animal physiology, biochemistry and physiology of nutrition, animal nutrition, feed technology and preservation (only when related to animal nutrition). Well-conducted scientific work that meets the technical and ethical standards is considered only on the basis of scientific rigor. Research on farm and companion animals is preferred. Comparative work on exotic species is welcome too. Pharmacological or toxicological experiments with a direct reference to nutrition are also considered. Manuscripts on fish and other aquatic non-mammals with topics on growth or nutrition will not be accepted. Manuscripts may be rejected on the grounds that the subject is too specialized or that the contribution they make to animal physiology and nutrition is insufficient. In addition, reviews on topics of current interest within the scope of the journal are welcome. Authors are advised to send an outline to the Editorial Office for approval prior to submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信