Florina P Szabó, Veronika Sigutova, Anna M Schneider, Anna Hoerder-Suabedissen, Zoltán Molnár
{"title":"皮层第5层锥体神经元亚群的慢性沉默对小白蛋白中间神经元和神经元周围网的层状分布有长期影响。","authors":"Florina P Szabó, Veronika Sigutova, Anna M Schneider, Anna Hoerder-Suabedissen, Zoltán Molnár","doi":"10.1111/joa.14181","DOIUrl":null,"url":null,"abstract":"<p><p>Neural networks are established throughout cortical development, which require the right ratios of glutamatergic and GABAergic neurons. Developmental disturbances in pyramidal neuron number and function can impede the development of GABAergic neurons, which can have long-lasting consequences on inhibitory networks. However, the role of deep-layer pyramidal neurons in instructing the development and distribution of GABAergic neurons is still unclear. To unravel the role of deep-layer pyramidal neuron activity in orchestrating the spatial and laminar distribution of parvalbumin neurons, we selectively manipulated subsets of layer 5 projection neurons. By deleting Snap25 selectively from Rbp4-Cre + pyramidal neurons, we abolished regulated vesicle release from subsets of cortical layer 5 projection neurons. Our findings revealed that chronically silencing subsets of layer 5 projection neurons did not change the number and distribution of parvalbumin neurons in the developing brain. However, it did have a long-term impact on the laminar distribution of parvalbumin neurons and their perineuronal nets in the adult primary motor and somatosensory cortices. The laminar positioning of parvalbumin neurons was altered in layer 4 of the primary somatosensory cortex in the adult Snap25 cKO mice. We discovered that the absence of layer 5 activity only had a transient effect on the soma morphology of striatal PV neurons during the third week of postnatal development. We also showed that the relationship between parvalbumin neurons and the perineuronal nets varied across different cortical layers and regions; therefore, their relationship is far more complex than previously described. The current study will help us better understand the bidirectional interaction between deep-layer pyramidal cells and GABAergic neurons, as well as the long-term impact of interrupting pyramidal neuron activity on inhibitory network formation.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chronic silencing of subsets of cortical layer 5 pyramidal neurons has a long-term influence on the laminar distribution of parvalbumin interneurons and the perineuronal nets.\",\"authors\":\"Florina P Szabó, Veronika Sigutova, Anna M Schneider, Anna Hoerder-Suabedissen, Zoltán Molnár\",\"doi\":\"10.1111/joa.14181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural networks are established throughout cortical development, which require the right ratios of glutamatergic and GABAergic neurons. Developmental disturbances in pyramidal neuron number and function can impede the development of GABAergic neurons, which can have long-lasting consequences on inhibitory networks. However, the role of deep-layer pyramidal neurons in instructing the development and distribution of GABAergic neurons is still unclear. To unravel the role of deep-layer pyramidal neuron activity in orchestrating the spatial and laminar distribution of parvalbumin neurons, we selectively manipulated subsets of layer 5 projection neurons. By deleting Snap25 selectively from Rbp4-Cre + pyramidal neurons, we abolished regulated vesicle release from subsets of cortical layer 5 projection neurons. Our findings revealed that chronically silencing subsets of layer 5 projection neurons did not change the number and distribution of parvalbumin neurons in the developing brain. However, it did have a long-term impact on the laminar distribution of parvalbumin neurons and their perineuronal nets in the adult primary motor and somatosensory cortices. The laminar positioning of parvalbumin neurons was altered in layer 4 of the primary somatosensory cortex in the adult Snap25 cKO mice. We discovered that the absence of layer 5 activity only had a transient effect on the soma morphology of striatal PV neurons during the third week of postnatal development. We also showed that the relationship between parvalbumin neurons and the perineuronal nets varied across different cortical layers and regions; therefore, their relationship is far more complex than previously described. The current study will help us better understand the bidirectional interaction between deep-layer pyramidal cells and GABAergic neurons, as well as the long-term impact of interrupting pyramidal neuron activity on inhibitory network formation.</p>\",\"PeriodicalId\":14971,\"journal\":{\"name\":\"Journal of Anatomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/joa.14181\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14181","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Chronic silencing of subsets of cortical layer 5 pyramidal neurons has a long-term influence on the laminar distribution of parvalbumin interneurons and the perineuronal nets.
Neural networks are established throughout cortical development, which require the right ratios of glutamatergic and GABAergic neurons. Developmental disturbances in pyramidal neuron number and function can impede the development of GABAergic neurons, which can have long-lasting consequences on inhibitory networks. However, the role of deep-layer pyramidal neurons in instructing the development and distribution of GABAergic neurons is still unclear. To unravel the role of deep-layer pyramidal neuron activity in orchestrating the spatial and laminar distribution of parvalbumin neurons, we selectively manipulated subsets of layer 5 projection neurons. By deleting Snap25 selectively from Rbp4-Cre + pyramidal neurons, we abolished regulated vesicle release from subsets of cortical layer 5 projection neurons. Our findings revealed that chronically silencing subsets of layer 5 projection neurons did not change the number and distribution of parvalbumin neurons in the developing brain. However, it did have a long-term impact on the laminar distribution of parvalbumin neurons and their perineuronal nets in the adult primary motor and somatosensory cortices. The laminar positioning of parvalbumin neurons was altered in layer 4 of the primary somatosensory cortex in the adult Snap25 cKO mice. We discovered that the absence of layer 5 activity only had a transient effect on the soma morphology of striatal PV neurons during the third week of postnatal development. We also showed that the relationship between parvalbumin neurons and the perineuronal nets varied across different cortical layers and regions; therefore, their relationship is far more complex than previously described. The current study will help us better understand the bidirectional interaction between deep-layer pyramidal cells and GABAergic neurons, as well as the long-term impact of interrupting pyramidal neuron activity on inhibitory network formation.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.