阵列CGH法研究自闭症谱系障碍患儿染色体异常及拷贝数变异。

IF 1.7 4区 医学 Q3 DEVELOPMENTAL BIOLOGY
Fethiye Kılıçaslan, Özlem Öz, Mehmet Burak Mutlu
{"title":"阵列CGH法研究自闭症谱系障碍患儿染色体异常及拷贝数变异。","authors":"Fethiye Kılıçaslan,&nbsp;Özlem Öz,&nbsp;Mehmet Burak Mutlu","doi":"10.1002/jdn.10397","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to identify the chromosomal anomalies and copy number variations (CNVs) in autism spectrum disorder (ASD) and to provide genotype/phenotype correlations. Fifty-four patients diagnosed with ASD between March 2021 and June 2022 were included in the study. Patients were evaluated by cytogenetic analysis and array comparative genomic hybridisation analysis (aCGH). The structural and numerical chromosomal anomaly was detected in 3.7%, and the CNVs were identified in 18.52% of patients. Of the CNVs detected, 27.3% were identified as pathogenic, 18.2% as likely pathogenic and 54.5% as VUS. The copy number gain rate of the detected CNVs was higher than the copy number losses rate, 70% and 30% respectively. As an important finding in the study, a new pathogenic CNV with a 6.3-mb copy number gain in the 3p22.3p22.2 region, whose gene region had not been previously defined in OMIM, was detected. Identifying a genetic aetiology may provide clinicians with more information about disease prognosis and risk of recurrence.</p>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"85 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of chromosomal anomalies and copy number variations in children diagnosed with autism spectrum disorder by array CGH method\",\"authors\":\"Fethiye Kılıçaslan,&nbsp;Özlem Öz,&nbsp;Mehmet Burak Mutlu\",\"doi\":\"10.1002/jdn.10397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aimed to identify the chromosomal anomalies and copy number variations (CNVs) in autism spectrum disorder (ASD) and to provide genotype/phenotype correlations. Fifty-four patients diagnosed with ASD between March 2021 and June 2022 were included in the study. Patients were evaluated by cytogenetic analysis and array comparative genomic hybridisation analysis (aCGH). The structural and numerical chromosomal anomaly was detected in 3.7%, and the CNVs were identified in 18.52% of patients. Of the CNVs detected, 27.3% were identified as pathogenic, 18.2% as likely pathogenic and 54.5% as VUS. The copy number gain rate of the detected CNVs was higher than the copy number losses rate, 70% and 30% respectively. As an important finding in the study, a new pathogenic CNV with a 6.3-mb copy number gain in the 3p22.3p22.2 region, whose gene region had not been previously defined in OMIM, was detected. Identifying a genetic aetiology may provide clinicians with more information about disease prognosis and risk of recurrence.</p>\",\"PeriodicalId\":13914,\"journal\":{\"name\":\"International Journal of Developmental Neuroscience\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Developmental Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jdn.10397\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jdn.10397","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在确定自闭症谱系障碍(ASD)的染色体异常和拷贝数变异(CNVs),并提供基因型/表型相关性。在2021年3月至2022年6月期间,54名被诊断为ASD的患者被纳入了这项研究。通过细胞遗传学分析和阵列比较基因组杂交分析(aCGH)对患者进行评估。3.7%的患者检测到结构和数字染色体异常,18.52%的患者检测到CNVs。在检测到的CNVs中,27.3%被鉴定为致病性,18.2%被鉴定为可能致病性,54.5%被鉴定为VUS。检测到的CNVs拷贝数增益率高于拷贝数损失率,分别为70%和30%。作为本研究的重要发现,在3p22.3p22.2区域检测到一种新的致病性CNV,其拷贝数增加6.3 mb,该基因区域此前未在OMIM中定义。确定遗传病因可以为临床医生提供更多关于疾病预后和复发风险的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation of chromosomal anomalies and copy number variations in children diagnosed with autism spectrum disorder by array CGH method

Investigation of chromosomal anomalies and copy number variations in children diagnosed with autism spectrum disorder by array CGH method

This study aimed to identify the chromosomal anomalies and copy number variations (CNVs) in autism spectrum disorder (ASD) and to provide genotype/phenotype correlations. Fifty-four patients diagnosed with ASD between March 2021 and June 2022 were included in the study. Patients were evaluated by cytogenetic analysis and array comparative genomic hybridisation analysis (aCGH). The structural and numerical chromosomal anomaly was detected in 3.7%, and the CNVs were identified in 18.52% of patients. Of the CNVs detected, 27.3% were identified as pathogenic, 18.2% as likely pathogenic and 54.5% as VUS. The copy number gain rate of the detected CNVs was higher than the copy number losses rate, 70% and 30% respectively. As an important finding in the study, a new pathogenic CNV with a 6.3-mb copy number gain in the 3p22.3p22.2 region, whose gene region had not been previously defined in OMIM, was detected. Identifying a genetic aetiology may provide clinicians with more information about disease prognosis and risk of recurrence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
78
审稿时长
6-12 weeks
期刊介绍: International Journal of Developmental Neuroscience publishes original research articles and critical review papers on all fundamental and clinical aspects of nervous system development, renewal and regeneration, as well as on the effects of genetic and environmental perturbations of brain development and homeostasis leading to neurodevelopmental disorders and neurological conditions. Studies describing the involvement of stem cells in nervous system maintenance and disease (including brain tumours), stem cell-based approaches for the investigation of neurodegenerative diseases, roles of neuroinflammation in development and disease, and neuroevolution are also encouraged. Investigations using molecular, cellular, physiological, genetic and epigenetic approaches in model systems ranging from simple invertebrates to human iPSC-based 2D and 3D models are encouraged, as are studies using experimental models that provide behavioural or evolutionary insights. The journal also publishes Special Issues dealing with topics at the cutting edge of research edited by Guest Editors appointed by the Editor in Chief. A major aim of the journal is to facilitate the transfer of fundamental studies of nervous system development, maintenance, and disease to clinical applications. The journal thus intends to disseminate valuable information for both biologists and physicians. International Journal of Developmental Neuroscience is owned and supported by The International Society for Developmental Neuroscience (ISDN), an organization of scientists interested in advancing developmental neuroscience research in the broadest sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信