鲤鱼精子呼吸的评价:光化学氧传感器荧光法与极谱法。

IF 2.5 3区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fish Physiology and Biochemistry Pub Date : 2025-02-01 Epub Date: 2024-12-04 DOI:10.1007/s10695-024-01418-2
Iryna Musatova, Borys Dzyuba, Serhii Boryshpolets, Azeem Iqbal, Anatolii Sotnikov, Vitaliy Kholodnyy, Viktoriya Dzyuba
{"title":"鲤鱼精子呼吸的评价:光化学氧传感器荧光法与极谱法。","authors":"Iryna Musatova, Borys Dzyuba, Serhii Boryshpolets, Azeem Iqbal, Anatolii Sotnikov, Vitaliy Kholodnyy, Viktoriya Dzyuba","doi":"10.1007/s10695-024-01418-2","DOIUrl":null,"url":null,"abstract":"<p><p>The primary function of spermatozoa is to fertilize the oocyte, which depends on their motility and is directly associated with their metabolic state. The oxygen consumption rate (OCR) of spermatozoa reflects the respiratory capacity of sperm mitochondria under various physiological conditions and is an essential marker of sperm quality. We determined the OCR of common carp (Cyprinus carpio) sperm using two respirometry methods: the conventionally used polarographic method with a Clark-type electrode and fluorometric assay with an Oxo Dish optochemical oxygen sensor. The latter was used for the first time to evaluate spermatozoa oxygen consumption in various metabolic states (under different treatments) at different dilution rates. These two methods were compared using Bland-Altman analysis, and the applicability of the optochemical oxygen sensor for evaluating carp sperm oxygen consumption was discussed. Sperm motility and progressive velocity parameters were also assessed to evaluate the effect of sperm respiration under different metabolic states and dilution rates and preincubation period on the physiological status of spermatozoa. The comparison of these respirometry methods clearly shows that while the polarographic method allows immediate measurement of oxygen levels after adding a sperm sample, the optochemical oxygen sensor has a priority in the amount of data obtained due to simultaneous measurements of several samples (e.g., different males, different fish species, repetitions of the same sample or various experimental conditions), even at a later time after adding sperm to the measuring chamber. However, the compared methods are complementary, and the proposed methodology can be applied to other fish species.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":"51 1","pages":"16"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618158/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of carp sperm respiration: fluorometry with optochemical oxygen sensor versus polarography.\",\"authors\":\"Iryna Musatova, Borys Dzyuba, Serhii Boryshpolets, Azeem Iqbal, Anatolii Sotnikov, Vitaliy Kholodnyy, Viktoriya Dzyuba\",\"doi\":\"10.1007/s10695-024-01418-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The primary function of spermatozoa is to fertilize the oocyte, which depends on their motility and is directly associated with their metabolic state. The oxygen consumption rate (OCR) of spermatozoa reflects the respiratory capacity of sperm mitochondria under various physiological conditions and is an essential marker of sperm quality. We determined the OCR of common carp (Cyprinus carpio) sperm using two respirometry methods: the conventionally used polarographic method with a Clark-type electrode and fluorometric assay with an Oxo Dish optochemical oxygen sensor. The latter was used for the first time to evaluate spermatozoa oxygen consumption in various metabolic states (under different treatments) at different dilution rates. These two methods were compared using Bland-Altman analysis, and the applicability of the optochemical oxygen sensor for evaluating carp sperm oxygen consumption was discussed. Sperm motility and progressive velocity parameters were also assessed to evaluate the effect of sperm respiration under different metabolic states and dilution rates and preincubation period on the physiological status of spermatozoa. The comparison of these respirometry methods clearly shows that while the polarographic method allows immediate measurement of oxygen levels after adding a sperm sample, the optochemical oxygen sensor has a priority in the amount of data obtained due to simultaneous measurements of several samples (e.g., different males, different fish species, repetitions of the same sample or various experimental conditions), even at a later time after adding sperm to the measuring chamber. However, the compared methods are complementary, and the proposed methodology can be applied to other fish species.</p>\",\"PeriodicalId\":12274,\"journal\":{\"name\":\"Fish Physiology and Biochemistry\",\"volume\":\"51 1\",\"pages\":\"16\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618158/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish Physiology and Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10695-024-01418-2\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10695-024-01418-2","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

精子的主要功能是使卵母细胞受精,这取决于它们的运动能力,并与它们的代谢状态直接相关。精子的耗氧量(OCR)反映了精子线粒体在各种生理条件下的呼吸能力,是精子质量的重要标志。本文采用两种呼吸测量方法测定鲤鱼精子的OCR,一种是clark型电极极谱法,另一种是Oxo Dish光化学氧传感器荧光法。后者首次用于评价不同稀释率下不同代谢状态下(不同处理下)精子耗氧量。采用Bland-Altman分析法对两种方法进行比较,探讨光化学氧传感器评价鲤鱼精子耗氧量的适用性。同时评估精子运动和速度参数,以评估不同代谢状态下精子呼吸对精子生理状态的影响以及稀释率和孵育前时间。这些呼吸测量方法的比较清楚地表明,虽然极谱法允许在添加精子样本后立即测量氧水平,但光化学氧传感器在同时测量多个样本(例如,不同的雄性,不同的鱼类,相同样本的重复或各种实验条件)时获得的数据量具有优先权,甚至在稍后的时间将精子添加到测量室之后。然而,比较的方法是互补的,所提出的方法可以应用于其他鱼类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of carp sperm respiration: fluorometry with optochemical oxygen sensor versus polarography.

The primary function of spermatozoa is to fertilize the oocyte, which depends on their motility and is directly associated with their metabolic state. The oxygen consumption rate (OCR) of spermatozoa reflects the respiratory capacity of sperm mitochondria under various physiological conditions and is an essential marker of sperm quality. We determined the OCR of common carp (Cyprinus carpio) sperm using two respirometry methods: the conventionally used polarographic method with a Clark-type electrode and fluorometric assay with an Oxo Dish optochemical oxygen sensor. The latter was used for the first time to evaluate spermatozoa oxygen consumption in various metabolic states (under different treatments) at different dilution rates. These two methods were compared using Bland-Altman analysis, and the applicability of the optochemical oxygen sensor for evaluating carp sperm oxygen consumption was discussed. Sperm motility and progressive velocity parameters were also assessed to evaluate the effect of sperm respiration under different metabolic states and dilution rates and preincubation period on the physiological status of spermatozoa. The comparison of these respirometry methods clearly shows that while the polarographic method allows immediate measurement of oxygen levels after adding a sperm sample, the optochemical oxygen sensor has a priority in the amount of data obtained due to simultaneous measurements of several samples (e.g., different males, different fish species, repetitions of the same sample or various experimental conditions), even at a later time after adding sperm to the measuring chamber. However, the compared methods are complementary, and the proposed methodology can be applied to other fish species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fish Physiology and Biochemistry
Fish Physiology and Biochemistry 农林科学-生化与分子生物学
CiteScore
5.60
自引率
6.90%
发文量
106
审稿时长
4 months
期刊介绍: Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信