Shaun F Morrison, Georgina Cano, Shelby L Hernan, Pierfrancesco Chiavetta, Domenico Tupone
{"title":"下丘脑腹内侧脑室周围区域的抑制激活了大鼠运动啡肽通路依赖的热调节反转。","authors":"Shaun F Morrison, Georgina Cano, Shelby L Hernan, Pierfrancesco Chiavetta, Domenico Tupone","doi":"10.1016/j.cub.2024.11.006","DOIUrl":null,"url":null,"abstract":"<p><p>To maintain core body temperature in mammals, CNS thermoregulatory networks respond to cold exposure by increasing brown adipose tissue and shivering thermogenesis. However, in hibernation or torpor, this canonical thermoregulatory response is replaced by a new, emerging paradigm, thermoregulatory inversion (TI), an alternative homeostatic state in which cold exposure inhibits thermogenesis and warm exposure stimulates thermogenesis. Here, we demonstrate that in the non-torpid rat, either exclusion of the canonical thermoregulatory integrator in the preoptic hypothalamus or inhibition of neurons in the ventromedial periventricular area (VMPeA) induces the TI state through an alternative thermoregulatory pathway. Within this pathway, we have identified a dynorphinergic input to the dorsomedial hypothalamus from the dorsolateral parabrachial nucleus that plays a critical role in mediating the cold-evoked inhibition of thermogenesis during TI. Our results reveal a novel thermosensory reflex circuit within the mammalian CNS thermoregulatory pathways and support the potential for pharmacologically inducing the TI state to elicit therapeutic hypothermia in non-hibernating species, including humans.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"59-76.e4"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706707/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inhibition of the hypothalamic ventromedial periventricular area activates a dynorphin pathway-dependent thermoregulatory inversion in rats.\",\"authors\":\"Shaun F Morrison, Georgina Cano, Shelby L Hernan, Pierfrancesco Chiavetta, Domenico Tupone\",\"doi\":\"10.1016/j.cub.2024.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To maintain core body temperature in mammals, CNS thermoregulatory networks respond to cold exposure by increasing brown adipose tissue and shivering thermogenesis. However, in hibernation or torpor, this canonical thermoregulatory response is replaced by a new, emerging paradigm, thermoregulatory inversion (TI), an alternative homeostatic state in which cold exposure inhibits thermogenesis and warm exposure stimulates thermogenesis. Here, we demonstrate that in the non-torpid rat, either exclusion of the canonical thermoregulatory integrator in the preoptic hypothalamus or inhibition of neurons in the ventromedial periventricular area (VMPeA) induces the TI state through an alternative thermoregulatory pathway. Within this pathway, we have identified a dynorphinergic input to the dorsomedial hypothalamus from the dorsolateral parabrachial nucleus that plays a critical role in mediating the cold-evoked inhibition of thermogenesis during TI. Our results reveal a novel thermosensory reflex circuit within the mammalian CNS thermoregulatory pathways and support the potential for pharmacologically inducing the TI state to elicit therapeutic hypothermia in non-hibernating species, including humans.</p>\",\"PeriodicalId\":11359,\"journal\":{\"name\":\"Current Biology\",\"volume\":\" \",\"pages\":\"59-76.e4\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706707/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cub.2024.11.006\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.11.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Inhibition of the hypothalamic ventromedial periventricular area activates a dynorphin pathway-dependent thermoregulatory inversion in rats.
To maintain core body temperature in mammals, CNS thermoregulatory networks respond to cold exposure by increasing brown adipose tissue and shivering thermogenesis. However, in hibernation or torpor, this canonical thermoregulatory response is replaced by a new, emerging paradigm, thermoregulatory inversion (TI), an alternative homeostatic state in which cold exposure inhibits thermogenesis and warm exposure stimulates thermogenesis. Here, we demonstrate that in the non-torpid rat, either exclusion of the canonical thermoregulatory integrator in the preoptic hypothalamus or inhibition of neurons in the ventromedial periventricular area (VMPeA) induces the TI state through an alternative thermoregulatory pathway. Within this pathway, we have identified a dynorphinergic input to the dorsomedial hypothalamus from the dorsolateral parabrachial nucleus that plays a critical role in mediating the cold-evoked inhibition of thermogenesis during TI. Our results reveal a novel thermosensory reflex circuit within the mammalian CNS thermoregulatory pathways and support the potential for pharmacologically inducing the TI state to elicit therapeutic hypothermia in non-hibernating species, including humans.
期刊介绍:
Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.