双皮质素加强微管,促进生长锥在软环境的进步。

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Current Biology Pub Date : 2024-12-16 Epub Date: 2024-12-02 DOI:10.1016/j.cub.2024.10.063
Alessandro Dema, Rabab A Charafeddine, Jeffrey van Haren, Shima Rahgozar, Giulia Viola, Kyle A Jacobs, Matthew L Kutys, Torsten Wittmann
{"title":"双皮质素加强微管,促进生长锥在软环境的进步。","authors":"Alessandro Dema, Rabab A Charafeddine, Jeffrey van Haren, Shima Rahgozar, Giulia Viola, Kyle A Jacobs, Matthew L Kutys, Torsten Wittmann","doi":"10.1016/j.cub.2024.10.063","DOIUrl":null,"url":null,"abstract":"<p><p>Doublecortin (DCX) is a microtubule (MT)-associated protein in immature neurons. DCX is essential for early brain development,<sup>1</sup> and DCX mutations account for nearly a quarter of all cases of lissencephaly-spectrum brain malformations<sup>2</sup><sup>,</sup><sup>3</sup> that arise from a neuronal migration failure through the developing cortex.<sup>4</sup> By analyzing pathogenic DCX missense mutations in non-neuronal cells, we show that disruption of MT binding is central to DCX pathology. In human-induced pluripotent stem cell (hiPSC)-derived cortical i<sup>3</sup>Neurons, genome edited to express DCX-mEmerald from the endogenous locus, DCX-MT interactions polarize very early during neuron morphogenesis. DCX interacts with MTs through two conserved DCX domains<sup>5</sup><sup>,</sup><sup>6</sup> that bind between protofilaments and adjacent tubulin dimers,<sup>7</sup> a site that changes conformation during guanosine triphosphate (GTP) hydrolysis.<sup>8</sup> Consequently and consistent with our previous results,<sup>5</sup> DCX specifically binds straight growth cone MTs and is excluded from the GTP/guanosine diphosphate (GDP)-inorganic phosphate (Pi) cap recognized by end-binding proteins (EBs). Comparing MT-bound DCX fluorescence to mEmerald-tagged nanocage standards, we measure approximately one hundred DCX molecules per micrometer growth cone MT. DCX is required for i<sup>3</sup>Neuron growth cone advance in soft microenvironments that mimic the viscoelasticity of brain tissue, and using high-resolution traction force microscopy, we find that growth cones produce comparatively small and transient traction forces. Given our finding that DCX stabilizes MTs in the growth cone periphery by inhibiting MT depolymerization, we propose that DCX contributes to growth cone biomechanics and reinforces the growth cone cytoskeleton to counteract actomyosin-generated contractile forces in soft physiological environments in which weak and transient adhesion-mediated traction may be insufficient for productive growth cone advance.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5822-5832.e5"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740832/pdf/","citationCount":"0","resultStr":"{\"title\":\"Doublecortin reinforces microtubules to promote growth cone advance in soft environments.\",\"authors\":\"Alessandro Dema, Rabab A Charafeddine, Jeffrey van Haren, Shima Rahgozar, Giulia Viola, Kyle A Jacobs, Matthew L Kutys, Torsten Wittmann\",\"doi\":\"10.1016/j.cub.2024.10.063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Doublecortin (DCX) is a microtubule (MT)-associated protein in immature neurons. DCX is essential for early brain development,<sup>1</sup> and DCX mutations account for nearly a quarter of all cases of lissencephaly-spectrum brain malformations<sup>2</sup><sup>,</sup><sup>3</sup> that arise from a neuronal migration failure through the developing cortex.<sup>4</sup> By analyzing pathogenic DCX missense mutations in non-neuronal cells, we show that disruption of MT binding is central to DCX pathology. In human-induced pluripotent stem cell (hiPSC)-derived cortical i<sup>3</sup>Neurons, genome edited to express DCX-mEmerald from the endogenous locus, DCX-MT interactions polarize very early during neuron morphogenesis. DCX interacts with MTs through two conserved DCX domains<sup>5</sup><sup>,</sup><sup>6</sup> that bind between protofilaments and adjacent tubulin dimers,<sup>7</sup> a site that changes conformation during guanosine triphosphate (GTP) hydrolysis.<sup>8</sup> Consequently and consistent with our previous results,<sup>5</sup> DCX specifically binds straight growth cone MTs and is excluded from the GTP/guanosine diphosphate (GDP)-inorganic phosphate (Pi) cap recognized by end-binding proteins (EBs). Comparing MT-bound DCX fluorescence to mEmerald-tagged nanocage standards, we measure approximately one hundred DCX molecules per micrometer growth cone MT. DCX is required for i<sup>3</sup>Neuron growth cone advance in soft microenvironments that mimic the viscoelasticity of brain tissue, and using high-resolution traction force microscopy, we find that growth cones produce comparatively small and transient traction forces. Given our finding that DCX stabilizes MTs in the growth cone periphery by inhibiting MT depolymerization, we propose that DCX contributes to growth cone biomechanics and reinforces the growth cone cytoskeleton to counteract actomyosin-generated contractile forces in soft physiological environments in which weak and transient adhesion-mediated traction may be insufficient for productive growth cone advance.</p>\",\"PeriodicalId\":11359,\"journal\":{\"name\":\"Current Biology\",\"volume\":\" \",\"pages\":\"5822-5832.e5\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740832/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cub.2024.10.063\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.10.063","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

双皮质素(DCX)是未成熟神经元中的微管(MT)相关蛋白。DCX对早期大脑发育至关重要,近四分之一的无脑谱系脑畸形是由DCX突变引起的,而无脑谱系脑畸形是由神经元在发育皮层中迁移失败引起的通过分析非神经元细胞中的致病性DCX错义突变,我们发现MT结合的破坏是DCX病理的核心。在人类诱导的多能干细胞(hiPSC)衍生的皮质i3神经元中,基因组编辑以表达来自内源性位点的DCX-mEmerald, DCX-MT相互作用在神经元形态发生过程中很早就极化。DCX通过两个保守的DCX结构域与MTs相互作用,这些结构域结合在原丝和相邻的微管蛋白二聚体之间,这是一个在三磷酸鸟苷(GTP)水解过程中改变构象的位点因此,与我们之前的结果一致,5 DCX特异性结合直生长锥mt,并且被排除在末端结合蛋白(EBs)识别的GTP/鸟苷二磷酸(GDP)-无机磷酸盐(Pi)帽中。将MT结合的DCX荧光与memerald标记的纳米笼标准进行比较,我们测量了每微米生长锥MT大约100个DCX分子。DCX是i3Neuron生长锥在模拟脑组织粘弹性的软微环境中推进所必需的,并且使用高分辨率牵引力显微镜,我们发现生长锥产生相对较小的瞬时牵引力。鉴于我们的发现,DCX通过抑制MT解聚来稳定生长锥体周围的MT,我们提出DCX有助于生长锥体的生物力学,并加强生长锥体的细胞骨架,以抵消软生理环境中肌动球蛋白产生的收缩力,在软生理环境中,弱和短暂的粘连介导的牵引力可能不足以促进生长锥体的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Doublecortin reinforces microtubules to promote growth cone advance in soft environments.

Doublecortin (DCX) is a microtubule (MT)-associated protein in immature neurons. DCX is essential for early brain development,1 and DCX mutations account for nearly a quarter of all cases of lissencephaly-spectrum brain malformations2,3 that arise from a neuronal migration failure through the developing cortex.4 By analyzing pathogenic DCX missense mutations in non-neuronal cells, we show that disruption of MT binding is central to DCX pathology. In human-induced pluripotent stem cell (hiPSC)-derived cortical i3Neurons, genome edited to express DCX-mEmerald from the endogenous locus, DCX-MT interactions polarize very early during neuron morphogenesis. DCX interacts with MTs through two conserved DCX domains5,6 that bind between protofilaments and adjacent tubulin dimers,7 a site that changes conformation during guanosine triphosphate (GTP) hydrolysis.8 Consequently and consistent with our previous results,5 DCX specifically binds straight growth cone MTs and is excluded from the GTP/guanosine diphosphate (GDP)-inorganic phosphate (Pi) cap recognized by end-binding proteins (EBs). Comparing MT-bound DCX fluorescence to mEmerald-tagged nanocage standards, we measure approximately one hundred DCX molecules per micrometer growth cone MT. DCX is required for i3Neuron growth cone advance in soft microenvironments that mimic the viscoelasticity of brain tissue, and using high-resolution traction force microscopy, we find that growth cones produce comparatively small and transient traction forces. Given our finding that DCX stabilizes MTs in the growth cone periphery by inhibiting MT depolymerization, we propose that DCX contributes to growth cone biomechanics and reinforces the growth cone cytoskeleton to counteract actomyosin-generated contractile forces in soft physiological environments in which weak and transient adhesion-mediated traction may be insufficient for productive growth cone advance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信