Xuechun Yuan, Yanzhu Lu, Xiaoqi Zhang, Yufei Tang, Shangyou Wen, Wenli Lai, Hu Long
{"title":"自噬阻滞对大鼠三叉神经痛的影响:小胶质细胞的作用。","authors":"Xuechun Yuan, Yanzhu Lu, Xiaoqi Zhang, Yufei Tang, Shangyou Wen, Wenli Lai, Hu Long","doi":"10.1111/eos.13029","DOIUrl":null,"url":null,"abstract":"<p>Microglia activation and autophagy changes are associated with the regulation of pain, but no study to date has been designed to address whether these features apply to trigeminal neuropathic pain. This study aimed to investigate how alterations in autophagy affect nociceptive behaviors may be associated with microglia activation in the caudal part of the spinal trigeminal nucleus (SpVC) in a rat model of trigeminal neuropathic pain. This model was established by chronic constriction injury of the infraorbital nerve. Autophagy inhibitors and agonists were injected into the lateral ventricle to regulate autophagy. The autophagy markers microtubule-associated protein light chain 3 I (LC3-I), LC3-II, sequestosome1 (p62), and LC-3 were examined by western blotting and/or immunofluorescence. The microglia marker ionized calcium binding adapter molecule 1 (Iba-1) was examined by immunohistochemistry. Nociceptive behavior changes were detected by measuring the mechanical thresholds and face-grooming duration. The results showed that microglia in SpVC were activated, and autophagy flux was blocked in the trigeminal neuropathic pain model. Autophagy agonists inhibited microglia activation and alleviated nociceptive behaviors. In contrast, autophagy inhibitors further activated microglia and exacerbated nociceptive behaviors. In a rat model of trigeminal neuropathic pain, autophagy blockage leads to microglia activation, which significantly influences nociceptive processes.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":"133 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of autophagy blockage on trigeminal neuropathic pain in rats: Role of microglia\",\"authors\":\"Xuechun Yuan, Yanzhu Lu, Xiaoqi Zhang, Yufei Tang, Shangyou Wen, Wenli Lai, Hu Long\",\"doi\":\"10.1111/eos.13029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microglia activation and autophagy changes are associated with the regulation of pain, but no study to date has been designed to address whether these features apply to trigeminal neuropathic pain. This study aimed to investigate how alterations in autophagy affect nociceptive behaviors may be associated with microglia activation in the caudal part of the spinal trigeminal nucleus (SpVC) in a rat model of trigeminal neuropathic pain. This model was established by chronic constriction injury of the infraorbital nerve. Autophagy inhibitors and agonists were injected into the lateral ventricle to regulate autophagy. The autophagy markers microtubule-associated protein light chain 3 I (LC3-I), LC3-II, sequestosome1 (p62), and LC-3 were examined by western blotting and/or immunofluorescence. The microglia marker ionized calcium binding adapter molecule 1 (Iba-1) was examined by immunohistochemistry. Nociceptive behavior changes were detected by measuring the mechanical thresholds and face-grooming duration. The results showed that microglia in SpVC were activated, and autophagy flux was blocked in the trigeminal neuropathic pain model. Autophagy agonists inhibited microglia activation and alleviated nociceptive behaviors. In contrast, autophagy inhibitors further activated microglia and exacerbated nociceptive behaviors. In a rat model of trigeminal neuropathic pain, autophagy blockage leads to microglia activation, which significantly influences nociceptive processes.</p>\",\"PeriodicalId\":11983,\"journal\":{\"name\":\"European Journal of Oral Sciences\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Oral Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eos.13029\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Oral Sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eos.13029","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Effect of autophagy blockage on trigeminal neuropathic pain in rats: Role of microglia
Microglia activation and autophagy changes are associated with the regulation of pain, but no study to date has been designed to address whether these features apply to trigeminal neuropathic pain. This study aimed to investigate how alterations in autophagy affect nociceptive behaviors may be associated with microglia activation in the caudal part of the spinal trigeminal nucleus (SpVC) in a rat model of trigeminal neuropathic pain. This model was established by chronic constriction injury of the infraorbital nerve. Autophagy inhibitors and agonists were injected into the lateral ventricle to regulate autophagy. The autophagy markers microtubule-associated protein light chain 3 I (LC3-I), LC3-II, sequestosome1 (p62), and LC-3 were examined by western blotting and/or immunofluorescence. The microglia marker ionized calcium binding adapter molecule 1 (Iba-1) was examined by immunohistochemistry. Nociceptive behavior changes were detected by measuring the mechanical thresholds and face-grooming duration. The results showed that microglia in SpVC were activated, and autophagy flux was blocked in the trigeminal neuropathic pain model. Autophagy agonists inhibited microglia activation and alleviated nociceptive behaviors. In contrast, autophagy inhibitors further activated microglia and exacerbated nociceptive behaviors. In a rat model of trigeminal neuropathic pain, autophagy blockage leads to microglia activation, which significantly influences nociceptive processes.
期刊介绍:
The European Journal of Oral Sciences is an international journal which publishes original research papers within clinical dentistry, on all basic science aspects of structure, chemistry, developmental biology, physiology and pathology of relevant tissues, as well as on microbiology, biomaterials and the behavioural sciences as they relate to dentistry. In general, analytical studies are preferred to descriptive ones. Reviews, Short Communications and Letters to the Editor will also be considered for publication.
The journal is published bimonthly.