基于混合深度学习技术的脑癌发生预测及脑出血风险评估。

IF 1.8 4区 医学 Q3 ONCOLOGY
Cancer Investigation Pub Date : 2025-01-01 Epub Date: 2024-12-04 DOI:10.1080/07357907.2024.2431829
Rajeshwar Prasad, Amit Kumar Saxena, Suman Laha
{"title":"基于混合深度学习技术的脑癌发生预测及脑出血风险评估。","authors":"Rajeshwar Prasad, Amit Kumar Saxena, Suman Laha","doi":"10.1080/07357907.2024.2431829","DOIUrl":null,"url":null,"abstract":"<p><p>The prediction of brain cancer occurrence and risk assessment of brain hemorrhage using a hybrid deep learning (DL) technique is a critical area of research in medical imaging analysis. One prominent challenge in this field is the accurate identification and classification of brain tumors and hemorrhages, which can significantly impact patient prognosis and treatment planning. The objectives of the study address the prediction of brain cancer occurrence and the assessment of risk levels associated with both brain cancers due to brain hemorrhage. A diverse dataset of brain MRI and CT scan images. Utilize Unsymmetrical Trimmed Median Filter with Optics Clustering for noise removal while preserving edges and details. The Chan-Vese segmentation process for refined segmentation. Brain cancer detection using Multi-Head Self-Attention Dilated Convolution Neural Network (MH-SA-DCNN) with Efficient Net Model. Brain cancer detection using MH-SA-DCNN with Efficient Net Model. This trains the algorithm to predict cancerous regions in brain images. Further, implement a Graph-Based Deep Neural Network Model (G-DNN) to capture spatial relationships and risk factors from brain images. Cox regression model to estimate cancer risk over time and fine-tune and optimize the model's parameters and features using the Osprey optimization algorithm (OPA).</p>","PeriodicalId":9463,"journal":{"name":"Cancer Investigation","volume":" ","pages":"80-102"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Brain Cancer Occurrence and Risk Assessment of Brain Hemorrhage Using Hybrid Deep Learning Technique.\",\"authors\":\"Rajeshwar Prasad, Amit Kumar Saxena, Suman Laha\",\"doi\":\"10.1080/07357907.2024.2431829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prediction of brain cancer occurrence and risk assessment of brain hemorrhage using a hybrid deep learning (DL) technique is a critical area of research in medical imaging analysis. One prominent challenge in this field is the accurate identification and classification of brain tumors and hemorrhages, which can significantly impact patient prognosis and treatment planning. The objectives of the study address the prediction of brain cancer occurrence and the assessment of risk levels associated with both brain cancers due to brain hemorrhage. A diverse dataset of brain MRI and CT scan images. Utilize Unsymmetrical Trimmed Median Filter with Optics Clustering for noise removal while preserving edges and details. The Chan-Vese segmentation process for refined segmentation. Brain cancer detection using Multi-Head Self-Attention Dilated Convolution Neural Network (MH-SA-DCNN) with Efficient Net Model. Brain cancer detection using MH-SA-DCNN with Efficient Net Model. This trains the algorithm to predict cancerous regions in brain images. Further, implement a Graph-Based Deep Neural Network Model (G-DNN) to capture spatial relationships and risk factors from brain images. Cox regression model to estimate cancer risk over time and fine-tune and optimize the model's parameters and features using the Osprey optimization algorithm (OPA).</p>\",\"PeriodicalId\":9463,\"journal\":{\"name\":\"Cancer Investigation\",\"volume\":\" \",\"pages\":\"80-102\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/07357907.2024.2431829\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/07357907.2024.2431829","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

利用混合深度学习(DL)技术预测脑癌的发生和评估脑出血的风险是医学影像分析的一个重要研究领域。该领域的一个突出挑战是准确识别和分类脑肿瘤和出血,这可以显著影响患者的预后和治疗计划。该研究的目的是预测脑癌的发生以及评估脑出血引起的两种脑癌的相关风险水平。脑MRI和CT扫描图像的多样化数据集。利用非对称修剪中值滤波器与光学聚类去除噪声,同时保留边缘和细节。采用Chan-Vese分割过程进行精细分割。基于高效网络模型的多头自注意扩展卷积神经网络(MH-SA-DCNN)检测脑癌。基于高效网络模型的MH-SA-DCNN脑癌检测。这训练算法来预测大脑图像中的癌变区域。此外,实现基于图的深度神经网络模型(G-DNN)从大脑图像中捕获空间关系和风险因素。Cox回归模型用于估计癌症风险随时间的变化,并使用Osprey优化算法(OPA)对模型的参数和特征进行微调和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Brain Cancer Occurrence and Risk Assessment of Brain Hemorrhage Using Hybrid Deep Learning Technique.

The prediction of brain cancer occurrence and risk assessment of brain hemorrhage using a hybrid deep learning (DL) technique is a critical area of research in medical imaging analysis. One prominent challenge in this field is the accurate identification and classification of brain tumors and hemorrhages, which can significantly impact patient prognosis and treatment planning. The objectives of the study address the prediction of brain cancer occurrence and the assessment of risk levels associated with both brain cancers due to brain hemorrhage. A diverse dataset of brain MRI and CT scan images. Utilize Unsymmetrical Trimmed Median Filter with Optics Clustering for noise removal while preserving edges and details. The Chan-Vese segmentation process for refined segmentation. Brain cancer detection using Multi-Head Self-Attention Dilated Convolution Neural Network (MH-SA-DCNN) with Efficient Net Model. Brain cancer detection using MH-SA-DCNN with Efficient Net Model. This trains the algorithm to predict cancerous regions in brain images. Further, implement a Graph-Based Deep Neural Network Model (G-DNN) to capture spatial relationships and risk factors from brain images. Cox regression model to estimate cancer risk over time and fine-tune and optimize the model's parameters and features using the Osprey optimization algorithm (OPA).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Investigation
Cancer Investigation 医学-肿瘤学
CiteScore
3.80
自引率
4.20%
发文量
71
审稿时长
8.5 months
期刊介绍: Cancer Investigation is one of the most highly regarded and recognized journals in the field of basic and clinical oncology. It is designed to give physicians a comprehensive resource on the current state of progress in the cancer field as well as a broad background of reliable information necessary for effective decision making. In addition to presenting original papers of fundamental significance, it also publishes reviews, essays, specialized presentations of controversies, considerations of new technologies and their applications to specific laboratory problems, discussions of public issues, miniseries on major topics, new and experimental drugs and therapies, and an innovative letters to the editor section. One of the unique features of the journal is its departmentalized editorial sections reporting on more than 30 subject categories covering the broad spectrum of specialized areas that together comprise the field of oncology. Edited by leading physicians and research scientists, these sections make Cancer Investigation the prime resource for clinicians seeking to make sense of the sometimes-overwhelming amount of information available throughout the field. In addition to its peer-reviewed clinical research, the journal also features translational studies that bridge the gap between the laboratory and the clinic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信