食欲素B通过调节rho相关的含蛋白激酶2/闭塞带-1 (ROCK2/ZO-1)轴抑制肺内皮屏障功能障碍,减轻败血症相关肺损伤。

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yiyuan Wang, Xiaohong Wan, Yusheng Li
{"title":"食欲素B通过调节rho相关的含蛋白激酶2/闭塞带-1 (ROCK2/ZO-1)轴抑制肺内皮屏障功能障碍,减轻败血症相关肺损伤。","authors":"Yiyuan Wang, Xiaohong Wan, Yusheng Li","doi":"10.1002/bab.2703","DOIUrl":null,"url":null,"abstract":"<p><p>Dysfunction of the alveolar endothelial barrier plays a crucial role in the pathogenesis of septic acute lung injury (ALI). orexin B is a neuropeptide derived from orexin neurons in the lateral hypothalamus and has multiple biological functions. However, the physiological function of orexin B in sepsis is less reported. Here, we aimed to explore the protective effects of orexin B in sepsis-induced ALI and its underlying mechanisms. In this study, we established an ALI in vivo animal model in mice using cecal ligation and puncture (CLP) and an in vitro ALI model using mouse lung microvascular endothelial cells (MLMECs) induced with lipopolysaccharides (LPS). The animal experiments involved four groups: Sham, Sham+orexin B, CLP, CLP+orexin B. First, our results demonstrate that the levels of serum orexin B but not orexin A were reduced in septic mice. Correspondingly, the expression of orexin type 2 receptor (OX2R), but not orexin type 1 receptor (OX1R), was reduced in the lung tissue of septic mice. Administration of orexin B decreased the mortality in sepsis mice and improved M-CASS scores. Hematoxylin-eosin (H&E) staining assay demonstrated that administration of orexin B ameliorated histopathological lung injury. orexin B was also found to inhibit the inflammatory response in the lung tissues of septic mice by reducing the expression of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and recombinant chemokine C-X-C-motif ligand 15 (CXCL15). Additionally, the total cell count and neutrophils in bronchoalveolar lavage fluid (BALF) were reduced by orexin B. Notably, orexin B alleviated vascular endothelial permeability in mice lung tissue by increasing the expression of the tight junction protein zonula occludens-1 (ZO-1) and occludin. In vitro experiments demonstrated that orexin B prevented LPS-induced endothelial permeability in mouse lung microvascular endothelial cells (MLMECs) by upregulating the expression of ZO-1 and occludin. These effects are mediated by rho-associated coiled-coil containing protein kinase 2 (ROCK2). Based on these findings, we conclude that orexin B alleviates sepsis-induced ALI by ameliorating endothelial permeability of lung microvascular endothelial cells.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"orexin B alleviates sepsis-associated lung injury through the attenuation of pulmonary endothelial barrier dysfunction by regulating the rho-associated coiled-coil containing protein kinase 2/zonula occludens-1 (ROCK2/ZO-1) axis.\",\"authors\":\"Yiyuan Wang, Xiaohong Wan, Yusheng Li\",\"doi\":\"10.1002/bab.2703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dysfunction of the alveolar endothelial barrier plays a crucial role in the pathogenesis of septic acute lung injury (ALI). orexin B is a neuropeptide derived from orexin neurons in the lateral hypothalamus and has multiple biological functions. However, the physiological function of orexin B in sepsis is less reported. Here, we aimed to explore the protective effects of orexin B in sepsis-induced ALI and its underlying mechanisms. In this study, we established an ALI in vivo animal model in mice using cecal ligation and puncture (CLP) and an in vitro ALI model using mouse lung microvascular endothelial cells (MLMECs) induced with lipopolysaccharides (LPS). The animal experiments involved four groups: Sham, Sham+orexin B, CLP, CLP+orexin B. First, our results demonstrate that the levels of serum orexin B but not orexin A were reduced in septic mice. Correspondingly, the expression of orexin type 2 receptor (OX2R), but not orexin type 1 receptor (OX1R), was reduced in the lung tissue of septic mice. Administration of orexin B decreased the mortality in sepsis mice and improved M-CASS scores. Hematoxylin-eosin (H&E) staining assay demonstrated that administration of orexin B ameliorated histopathological lung injury. orexin B was also found to inhibit the inflammatory response in the lung tissues of septic mice by reducing the expression of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and recombinant chemokine C-X-C-motif ligand 15 (CXCL15). Additionally, the total cell count and neutrophils in bronchoalveolar lavage fluid (BALF) were reduced by orexin B. Notably, orexin B alleviated vascular endothelial permeability in mice lung tissue by increasing the expression of the tight junction protein zonula occludens-1 (ZO-1) and occludin. In vitro experiments demonstrated that orexin B prevented LPS-induced endothelial permeability in mouse lung microvascular endothelial cells (MLMECs) by upregulating the expression of ZO-1 and occludin. These effects are mediated by rho-associated coiled-coil containing protein kinase 2 (ROCK2). Based on these findings, we conclude that orexin B alleviates sepsis-induced ALI by ameliorating endothelial permeability of lung microvascular endothelial cells.</p>\",\"PeriodicalId\":9274,\"journal\":{\"name\":\"Biotechnology and applied biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and applied biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bab.2703\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2703","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肺泡内皮屏障功能障碍在感染性急性肺损伤(ALI)的发病机制中起着至关重要的作用。食欲素B是一种源自下丘脑外侧食欲素神经元的神经肽,具有多种生物学功能。然而,食欲素B在脓毒症中的生理功能报道较少。在这里,我们旨在探讨食欲素B在脓毒症诱导的ALI中的保护作用及其潜在机制。本研究采用盲肠结扎穿刺法(CLP)建立小鼠体内ALI动物模型,采用脂多糖(LPS)诱导小鼠肺微血管内皮细胞(mlmes)建立体外ALI模型。动物实验分为四组:Sham, Sham+orexin B, CLP, CLP+orexin B。首先,我们的研究结果表明,在脓毒症小鼠中,血清orexin B水平降低,而orexin A水平未降低。相应地,在脓毒症小鼠肺组织中,食欲素2型受体(OX2R)的表达降低,而食欲素1型受体(OX1R)的表达不降低。给药食欲素B可降低脓毒症小鼠的死亡率,提高M-CASS评分。苏木精-伊红(H&E)染色试验表明,给药食欲素B改善了组织病理学肺损伤。食欲素B还被发现通过降低肿瘤坏死因子α (TNF-α)、白细胞介素6 (IL-6)和重组趋化因子C-X-C-motif配体15 (CXCL15)的表达来抑制脓毒症小鼠肺组织的炎症反应。此外,食欲素B还能降低支气管肺泡灌洗液(BALF)中的细胞总数和中性粒细胞。值得注意的是,食欲素B通过增加紧密连接蛋白闭塞带-1 (ZO-1)和occludin的表达,减轻了小鼠肺组织血管内皮的通透性。体外实验表明,orexin B通过上调ZO-1和occludin的表达,抑制lps诱导的小鼠肺微血管内皮细胞(mlmes)内皮通透性。这些作用是由rho相关的含卷曲卷曲蛋白激酶2 (ROCK2)介导的。基于这些发现,我们得出结论,食欲素B通过改善肺微血管内皮细胞的内皮通透性来减轻败血症诱导的ALI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
orexin B alleviates sepsis-associated lung injury through the attenuation of pulmonary endothelial barrier dysfunction by regulating the rho-associated coiled-coil containing protein kinase 2/zonula occludens-1 (ROCK2/ZO-1) axis.

Dysfunction of the alveolar endothelial barrier plays a crucial role in the pathogenesis of septic acute lung injury (ALI). orexin B is a neuropeptide derived from orexin neurons in the lateral hypothalamus and has multiple biological functions. However, the physiological function of orexin B in sepsis is less reported. Here, we aimed to explore the protective effects of orexin B in sepsis-induced ALI and its underlying mechanisms. In this study, we established an ALI in vivo animal model in mice using cecal ligation and puncture (CLP) and an in vitro ALI model using mouse lung microvascular endothelial cells (MLMECs) induced with lipopolysaccharides (LPS). The animal experiments involved four groups: Sham, Sham+orexin B, CLP, CLP+orexin B. First, our results demonstrate that the levels of serum orexin B but not orexin A were reduced in septic mice. Correspondingly, the expression of orexin type 2 receptor (OX2R), but not orexin type 1 receptor (OX1R), was reduced in the lung tissue of septic mice. Administration of orexin B decreased the mortality in sepsis mice and improved M-CASS scores. Hematoxylin-eosin (H&E) staining assay demonstrated that administration of orexin B ameliorated histopathological lung injury. orexin B was also found to inhibit the inflammatory response in the lung tissues of septic mice by reducing the expression of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and recombinant chemokine C-X-C-motif ligand 15 (CXCL15). Additionally, the total cell count and neutrophils in bronchoalveolar lavage fluid (BALF) were reduced by orexin B. Notably, orexin B alleviated vascular endothelial permeability in mice lung tissue by increasing the expression of the tight junction protein zonula occludens-1 (ZO-1) and occludin. In vitro experiments demonstrated that orexin B prevented LPS-induced endothelial permeability in mouse lung microvascular endothelial cells (MLMECs) by upregulating the expression of ZO-1 and occludin. These effects are mediated by rho-associated coiled-coil containing protein kinase 2 (ROCK2). Based on these findings, we conclude that orexin B alleviates sepsis-induced ALI by ameliorating endothelial permeability of lung microvascular endothelial cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology and applied biochemistry
Biotechnology and applied biochemistry 工程技术-生化与分子生物学
CiteScore
6.00
自引率
7.10%
发文量
117
审稿时长
3 months
期刊介绍: Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation. The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信