进化生物系统的降维与适应-发展-进化关系。

IF 4.9 Q1 BIOPHYSICS
Biophysical reviews Pub Date : 2024-09-30 eCollection Date: 2024-10-01 DOI:10.1007/s12551-024-01233-2
Kunihiko Kaneko
{"title":"进化生物系统的降维与适应-发展-进化关系。","authors":"Kunihiko Kaneko","doi":"10.1007/s12551-024-01233-2","DOIUrl":null,"url":null,"abstract":"<p><p>Living systems are complex and hierarchical, with diverse components at different scales, yet they sustain themselves, grow, and evolve over time. How can a theory of such complex biological states be developed? Here we note that for a hierarchical biological system to be robust, it must achieve consistency between micro-scale (e.g., molecular) and macro-scale (e.g., cellular) phenomena. This allows for a universal theory of adaptive change in cells based on biological robustness and consistency between cellular growth and molecular replication. Here, we show how adaptive changes in high-dimensional phenotypes (biological states) are constrained to low-dimensional space, leading to the derivation of a macroscopic law for cellular states. The theory is then extended to evolution, leading to proportionality between evolutionary and environmental responses, as well as proportionality between phenotypic variances due to noise and due to genetic changes. The universality of the results across several models and experiments is demonstrated. Then, by further extending the theory of evolutionary dimensional reduction to multicellular systems, the relationship between multicellular development and evolution, in particular, the developmental hourglass, is demonstrated. Finally, the possibility of collapse of dimensional reduction under nutrient limitation is discussed.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 5","pages":"639-649"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604870/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dimensional reduction and adaptation-development-evolution relation in evolved biological systems.\",\"authors\":\"Kunihiko Kaneko\",\"doi\":\"10.1007/s12551-024-01233-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Living systems are complex and hierarchical, with diverse components at different scales, yet they sustain themselves, grow, and evolve over time. How can a theory of such complex biological states be developed? Here we note that for a hierarchical biological system to be robust, it must achieve consistency between micro-scale (e.g., molecular) and macro-scale (e.g., cellular) phenomena. This allows for a universal theory of adaptive change in cells based on biological robustness and consistency between cellular growth and molecular replication. Here, we show how adaptive changes in high-dimensional phenotypes (biological states) are constrained to low-dimensional space, leading to the derivation of a macroscopic law for cellular states. The theory is then extended to evolution, leading to proportionality between evolutionary and environmental responses, as well as proportionality between phenotypic variances due to noise and due to genetic changes. The universality of the results across several models and experiments is demonstrated. Then, by further extending the theory of evolutionary dimensional reduction to multicellular systems, the relationship between multicellular development and evolution, in particular, the developmental hourglass, is demonstrated. Finally, the possibility of collapse of dimensional reduction under nutrient limitation is discussed.</p>\",\"PeriodicalId\":9094,\"journal\":{\"name\":\"Biophysical reviews\",\"volume\":\"16 5\",\"pages\":\"639-649\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604870/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12551-024-01233-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-024-01233-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

生命系统是复杂的、分层的,有不同规模的不同组成部分,但它们能自我维持、生长和进化。如此复杂的生物状态理论是如何形成的呢?在这里,我们注意到,为了使分层生物系统具有鲁棒性,它必须在微观尺度(如分子)和宏观尺度(如细胞)现象之间实现一致性。这使得基于细胞生长和分子复制之间的生物稳健性和一致性的细胞适应性变化的普遍理论成为可能。在这里,我们展示了高维表型(生物状态)的适应性变化如何被限制在低维空间,从而推导出细胞状态的宏观规律。然后将该理论扩展到进化,导致进化和环境反应之间的比例关系,以及由于噪声和由于遗传变化引起的表型差异之间的比例关系。结果在多个模型和实验中具有普遍性。然后,通过进一步将进化降维理论扩展到多细胞系统,证明了多细胞发育和进化之间的关系,特别是发育沙漏。最后,讨论了在养分限制下缩维崩溃的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimensional reduction and adaptation-development-evolution relation in evolved biological systems.

Living systems are complex and hierarchical, with diverse components at different scales, yet they sustain themselves, grow, and evolve over time. How can a theory of such complex biological states be developed? Here we note that for a hierarchical biological system to be robust, it must achieve consistency between micro-scale (e.g., molecular) and macro-scale (e.g., cellular) phenomena. This allows for a universal theory of adaptive change in cells based on biological robustness and consistency between cellular growth and molecular replication. Here, we show how adaptive changes in high-dimensional phenotypes (biological states) are constrained to low-dimensional space, leading to the derivation of a macroscopic law for cellular states. The theory is then extended to evolution, leading to proportionality between evolutionary and environmental responses, as well as proportionality between phenotypic variances due to noise and due to genetic changes. The universality of the results across several models and experiments is demonstrated. Then, by further extending the theory of evolutionary dimensional reduction to multicellular systems, the relationship between multicellular development and evolution, in particular, the developmental hourglass, is demonstrated. Finally, the possibility of collapse of dimensional reduction under nutrient limitation is discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical reviews
Biophysical reviews Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
8.90
自引率
0.00%
发文量
93
期刊介绍: Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信