集成高性能计算,机器学习,数据管理工作流程,以及多尺度模拟和纳米材料技术的基础设施。

IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Beilstein Journal of Nanotechnology Pub Date : 2024-11-27 eCollection Date: 2024-01-01 DOI:10.3762/bjnano.15.119
Fabio Le Piane, Mario Vozza, Matteo Baldoni, Francesco Mercuri
{"title":"集成高性能计算,机器学习,数据管理工作流程,以及多尺度模拟和纳米材料技术的基础设施。","authors":"Fabio Le Piane, Mario Vozza, Matteo Baldoni, Francesco Mercuri","doi":"10.3762/bjnano.15.119","DOIUrl":null,"url":null,"abstract":"<p><p>This perspective article explores the convergence of advanced digital technologies, including high-performance computing (HPC), artificial intelligence, machine learning, and sophisticated data management workflows. The primary objective is to enhance the accessibility of multiscale simulations and their integration with other computational techniques, thereby advancing the field of nanomaterials technologies. The proposed approach relies on key strategies and digital technologies employed to achieve efficient and innovative materials discovery, emphasizing a fully digital, data-centric methodology. The integration of methodologies rooted in knowledge and structured information management serves as a foundational element, establishing a framework for representing materials-related information and ensuring interoperability across a diverse range of tools. The paper explores the distinctive features of digital and data-centric approaches and technologies for materials development. It highlights the role of digital twins in research, particularly in the realm of nanomaterials development and examines the impact of knowledge engineering in establishing data and information standards to facilitate interoperability. Furthermore, the paper explores the role of deployment technologies in managing HPC infrastructures. It also addresses the pairing of these technologies with user-friendly development tools to support the adoption of digital methodologies in advanced research.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1498-1521"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610488/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating high-performance computing, machine learning, data management workflows, and infrastructures for multiscale simulations and nanomaterials technologies.\",\"authors\":\"Fabio Le Piane, Mario Vozza, Matteo Baldoni, Francesco Mercuri\",\"doi\":\"10.3762/bjnano.15.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This perspective article explores the convergence of advanced digital technologies, including high-performance computing (HPC), artificial intelligence, machine learning, and sophisticated data management workflows. The primary objective is to enhance the accessibility of multiscale simulations and their integration with other computational techniques, thereby advancing the field of nanomaterials technologies. The proposed approach relies on key strategies and digital technologies employed to achieve efficient and innovative materials discovery, emphasizing a fully digital, data-centric methodology. The integration of methodologies rooted in knowledge and structured information management serves as a foundational element, establishing a framework for representing materials-related information and ensuring interoperability across a diverse range of tools. The paper explores the distinctive features of digital and data-centric approaches and technologies for materials development. It highlights the role of digital twins in research, particularly in the realm of nanomaterials development and examines the impact of knowledge engineering in establishing data and information standards to facilitate interoperability. Furthermore, the paper explores the role of deployment technologies in managing HPC infrastructures. It also addresses the pairing of these technologies with user-friendly development tools to support the adoption of digital methodologies in advanced research.</p>\",\"PeriodicalId\":8802,\"journal\":{\"name\":\"Beilstein Journal of Nanotechnology\",\"volume\":\"15 \",\"pages\":\"1498-1521\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610488/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beilstein Journal of Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3762/bjnano.15.119\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.15.119","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这篇透视文章探讨了先进数字技术的融合,包括高性能计算(HPC)、人工智能、机器学习和复杂的数据管理工作流。主要目标是提高多尺度模拟的可及性及其与其他计算技术的集成,从而推进纳米材料技术领域。所提出的方法依赖于关键战略和数字技术,以实现高效和创新的材料发现,强调完全数字化,以数据为中心的方法。基于知识和结构化信息管理的方法的集成作为一个基础元素,建立了一个框架,用于表示与材料相关的信息,并确保跨各种工具的互操作性。本文探讨了数字和以数据为中心的材料开发方法和技术的鲜明特征。它强调了数字孪生在研究中的作用,特别是在纳米材料开发领域,并研究了知识工程在建立数据和信息标准以促进互操作性方面的影响。此外,本文还探讨了部署技术在管理高性能计算基础设施中的作用。它还解决了这些技术与用户友好的开发工具的配对,以支持在高级研究中采用数字方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating high-performance computing, machine learning, data management workflows, and infrastructures for multiscale simulations and nanomaterials technologies.

This perspective article explores the convergence of advanced digital technologies, including high-performance computing (HPC), artificial intelligence, machine learning, and sophisticated data management workflows. The primary objective is to enhance the accessibility of multiscale simulations and their integration with other computational techniques, thereby advancing the field of nanomaterials technologies. The proposed approach relies on key strategies and digital technologies employed to achieve efficient and innovative materials discovery, emphasizing a fully digital, data-centric methodology. The integration of methodologies rooted in knowledge and structured information management serves as a foundational element, establishing a framework for representing materials-related information and ensuring interoperability across a diverse range of tools. The paper explores the distinctive features of digital and data-centric approaches and technologies for materials development. It highlights the role of digital twins in research, particularly in the realm of nanomaterials development and examines the impact of knowledge engineering in establishing data and information standards to facilitate interoperability. Furthermore, the paper explores the role of deployment technologies in managing HPC infrastructures. It also addresses the pairing of these technologies with user-friendly development tools to support the adoption of digital methodologies in advanced research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Beilstein Journal of Nanotechnology
Beilstein Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.70
自引率
3.20%
发文量
109
审稿时长
2 months
期刊介绍: The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology. The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信